Response selection in schizophrenia

Experimental Brain Research - 2007-07-01Pellizzer G, Stephane M10.1007/s00221-007-0892-5
Schizophrenia patients tend to have longer and more variable latencies of response than healthy control subjects. However, the distributions of data from the two groups overlap to a large extent. Therefore, we investigated (1) whether the process of response selection in schizophrenia patients is like that of slow control subjects or has different properties, and (2) whether the intra-individual variability of schizophrenia patients is intrinsically greater than that of control subjects or reflects their longer mean latency. To answer these questions we tested schizophrenia patients and healthy control subjects in a choice reaction time (RT) task with 2-choice and 4-choice conditions. We analyzed how mean RT in the 2-choice condition predicted mean RT in the 4-choice condition and found that the relation was significantly different between the two groups. In contrast, the intra-individual variability of RT was related to mean RT in the same way for schizophrenia patients and control subjects. These results indicate that the response selection process of schizophrenia patients was not simply a slower version of the same process engaged by control subjects, but it was a selection process with different dynamic properties. In contrast, schizophrenia patients did not have a greater intrinsic variability than control subjects. Furthermore, we found that the difference Δt between RT measured in the 4-choice condition and RT predicted for the control group in the same condition could be used to discriminate effectively patients and control subjects. However, there was no significant association between Δt and clinical variables. These results suggest that Δt could reflect a trait impairment of schizophrenia independent from symptom profile. Finally, we suggest that the impairment of the process of selection of the motor response in schizophrenia reflects the alteration of the time-dependent patterns of neural activity that result from anomalies in the connectivity of the brain areas engaged for the selection of the motor response.