SARS-CoV-2 in silico binding affinity to Human Leukocyte AntigenHuman Leukocyte Antigen (HLA)Genes that are located in the Major Histocompatibility Complex (MHC) of chromosome 6 and play a central role in immune recognition. Most investigations of association of HLA to various diseases have focused on evaluating HLA allele frequencies in diseases of interest, as compared to the general, healthy population. Such studies have demonstrated HLA involvement with cancer, autoimmune, and in- fectious diseases. HLA Class I proteins (HLA-A, B, C) are expressed on all nucleated cells and present peptides from endogenous proteins to cytotoxic T lymphocytes engaged in immune surveillance. HLA Class II proteins (HLA-DRB1, DRB3/4/5, DQB1, DPB1) are expressed on antigen-presenting cells and present peptides derived from exogenous proteins to CD4+helper T cells. A previous study of Gulf War syndrome in 27 veterans found that HLA DRB1*15 was more prevalent in cases than controls with an odds ratio of 1.66, although this association was not statistically significant. Class II molecules predicts vaccine effectiveness across variants of concern (VOC)


There is widespread concern about the clinical effectiveness of current vaccines in preventing Covid-19 caused by SARS-CoV-2 Variants of Concern (Williams in Lancet Respir Med 29:333^aEUR"335, 2021; Hayawi in Vaccines 9:1305, 2021), including those identified at present (Alpha, Beta, Gamma, Delta, Omicron) and possibly new ones arising in the future. It would be valuable to be able to predict vaccine effectiveness for any variant. Here we offer such an estimate of predicted vaccine effectiveness for any SARS-CoV-2 variant based on the amount of overlap of in silico high binding affinity of the variant and Wildtype spike glycoproteins to a pool of frequent Human Leukocyte AntigenHuman Leukocyte Antigen (HLA)Genes that are located in the Major Histocompatibility Complex (MHC) of chromosome 6 and play a central role in immune recognition. Most investigations of association of HLA to various diseases have focused on evaluating HLA allele frequencies in diseases of interest, as compared to the general, healthy population. Such studies have demonstrated HLA involvement with cancer, autoimmune, and in- fectious diseases. HLA Class I proteins (HLA-A, B, C) are expressed on all nucleated cells and present peptides from endogenous proteins to cytotoxic T lymphocytes engaged in immune surveillance. HLA Class II proteins (HLA-DRB1, DRB3/4/5, DQB1, DPB1) are expressed on antigen-presenting cells and present peptides derived from exogenous proteins to CD4+helper T cells. A previous study of Gulf War syndrome in 27 veterans found that HLA DRB1*15 was more prevalent in cases than controls with an odds ratio of 1.66, although this association was not statistically significant. Class II molecules which are necessary for initiating antibody production (Blum et al. in Annu Rev Immunol 31:443^aEUR"473, 2013). The predictive model was strong (r^aEURo/oo=^aEURo/oo0.910) and statistically significant (P^aEURo/oo=^aEURo/oo0.013).