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Abstract

B The functional equivalence of overt movements and
dynamic imagery is of fundamental importance in neu-
roscience. Here, we investigated the participation of the
neocortical motor areas in a classic task of dynamic imagery,
Shepard and Metzler’s mental rotation task, by time-resolved
single-trial functional Magnetic Resonance Imaging (fMRI). The
subjects performed the mental-rotation task 16 times, each
time with different object pairs. Functional images were
acquired for each pair separately, and the onset times and

INTRODUCTION

An ever recurring and yet unproven hypothesis in the
neuroscientific literature is the functional equivalence of
dynamic imagery and overt movements (Weimer, 1977;
James, 1950). While there is a wealth of experimental
data on the brain structures subserving the latter, analo-
gous experiments concerning dynamic imagery are gen-
erally much less straightforward to design and to
interpret. A frequently studied example of a dynamic
imagery task is the mental rotation of 3-D objects in
space, originally introduced by Shepard and Metzler
(1971) (Figure 1). The task is to decide whether two
objects shown are identical to one another or mirror
images; in general, the two objects are rotated relative to
each other. It was conjectured that the subject carries
out this task by rotating the objects along a smooth
angular trajectory into congruence with one another.
Evidence for this comes from psychophysical studies.
Most important is the fact that the response time (RT)
increases linearly with the rotation angle, thus suggest-
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widths of the activation peaks in each area of interest were
compared to the response times. We found a bilateral
involvement of the superior parietal lobule, lateral premotor
area, and supplementary motor area in all subjects; we found,
furthermore, that those areas likely participate in the very act
of mental rotation. We also found an activation in the left
primary motor cortex, which seemed to be associated with the
right-hand button press at the end of the task period. W

ing that the object is rotated mentally with constant
angular velocity (Shepard & Metzler, 1971).

It is well-known that the superior-parietal lobule is
involved in mental rotation (Tagaris et al., 1996; Tagaris
et al.,, 1997; Tagaris et al., 1998; Alivisatos & Petrides,
1996; Cohen et al., 1996). However, studies of the
activity in motor areas in the visual-mental rotation task
under investigation here have been somewhat less con-
clusive. Previous fMRI studies of the mental rotation of 3-
D objects in our laboratory showed that the activation in
the right precentral gyrus is related to the rate of mental
rotation, whereas activation in the superior parietal
lobule is related to the performance (Tagaris et al,
1996; Tagaris et al., 1997). Similarly, the precentral gyrus
was shown to be activated bilaterally during the perfor-
mance of 2-D visual mental rotation (Tagaris et al.,
1998). A recent study employing positron emission
tomography (PET) compared the mental rotation of
Shepard and Metzler’s figures with the mental rotation
of images of hands (Kosslyn, DiGirolamo, Thompson, &
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Figure 1. Shepard and Metzler’s mental rotation task. The subject
has to decide whether the two objects are identical or mirror images; in
this case, the objects are identical.

Alpert, 1998). Even though both tasks activated areas
throughout the parietal lobe, the rotation of the ab-
stract objects did not induce an activation in the frontal
motor areas. The authors concluded that Shepard and
Metzler’s task, unlike the rotation of hand images, does
not involve low-level motor processes. This result may
be compared to an earlier fMRI study (Cohen et al.,
1996), where the authors found consistent activation
only in the supplementary motor area (SMA), but not in
other frontal motor areas. The activation in SMA was
tentatively attributed to the attentional requirement of
this complex task. A study of Parkinson’s disease (PD)

found that 3-D, but not 2-D, mental rotation is impaired
in patients; however, the authors did not suggest that
the motor deficits accompanying PD are causally related
to the mental-rotation impairment (Lee, Harris, & Cal-
vert, 1997). An EEG study of the 3-D mental rotation
found activity over left premotor regions and other
areas of the frontal cortex (Williams, Rippon, Stone, &
Annett, 1995). The authors concede that this may be
due not only to an isolated-motor process, but also to
some interactions with attentional or decision-making
processes.

In the present experiment, we investigated the func-
tional activity in the frontal motor areas during the
performance of the mental-rotation task by time-re-
solved fMRI (Richter, in press; Kim, Richter, & Ugurbil,
1997; Richter, Andersen, Georgopoulos, & Kim, 1997a;
Richter, Ugurbil, Georgopoulos, & Kim, 1997b). At high
magnetic fields, there is often enough sensitivity to
monitor the evolution of the fMRI signal in a single
execution of a cognitive task without averaging over
many trials. Hence, it is possible to perform separately
many such single trial executions of a task. Subse-
quently, temporal characteristics (such as onset time
and width) of the fMRI signal can be correlated with
behavioral data, such as the response time. A schematic
of this method is shown in Figure 2. For example, in
our previous investigation of motor tasks (Kim et al.,
1997; Richter et al., 1997b), the fMRI responses in the
motor areas were compared with the well-controlled

Figure 2. Schematic
description of time-resolved
fMRI. The straight lines
symbolize linear fits of a
time-course parameter to a
behavioral parameter. If the
two parameters are corre-
lated, we may conclude that
the observed activity is
caused by a neuronal event
that scales with the beha-
vioral parameter (i.e., the
response time). If they are
not correlated, the activity is
caused by an event that is
constant from trial to trial.
Depending on the nature of
the task, the behavioral
parameter, and the fMRI
time-course parameters,
conclusions may be drawn
about the temporal sequence of
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motor preparation times. In that study, the premotor
area (PM) and the SMA were found to be activated
during both the motor preparation and execution
periods. Our group has also used this method (Richter
et al,, 1997b) to investigate the participation of the
superior parietal lobe (SPL) in the execution of the
mental-rotation task. We found that the onset of the
fMRI signal was independent of the response time
(the time the subject takes to make a decision),
whereas its duration (minus a constant offset) was
equal to the response time. We concluded that the
SPL is intimately involved in the very act of mental
rotation. That experiment showed that the specific
function of a given brain area in a cognitive task can
be determined by this method, beyond merely stating
whether the area is activated or not. Here, we inves-
tigate the participation of neocortical motor areas in
the mental rotation task.

RESULTS

Shepard and Metzler (1971) found a linear increase of
the response time with the rotation angle in their
mental rotation task. Therefore, we assessed the linear-

ity of this function for our data in order to verify that the
subjects were indeed carrying out this task by the same
process. However, the statistical power is much lower
(we only used 10 identical object pairs in each subject,
as compared to 400 in Shepard and Metzler’s original
experiment). Furthermore, each object occurred only
twice among these 10 pairs (five different objects and
their mirror images). We found an overall confidence
level of p=.044 for a linear correlation of the rotation
angle and response time. The rotation-speed average
over all objects was found to be approximately 20°/sec.
This is considerably lower than Shepard and Metzler’s
result of 50°/sec. We suspect that the reason for this
discrepancy lies in the instruction we gave the subject to
try to solve the problem correctly, regardless of speed.
The mechanism of rotation might, therefore, be differ-
ent, or the subjects might carry out the rotation more
than once.

A parametric-activation map for the second slice from
the top in one subject is shown in Figure 3. Note that
not all areas that show activation, such as the frontal eye
fields, were considered further for the purpose of this
experiment. In all six subjects, bilateral activation was
found in the SPL, in the lateral premotor areas (lateral

premotor area

superior parietal lobule

R Slice 2 L

medial motor areas

premotor area

superior parietal lobule

Figure 3. Parametric simultaneous activation map for one subject (one slice, all trials). This map is interpolated from the calculated map’s 64 x 64
matrix size to the anatomical background (256x256). The activation can be seen in the lateral and medial motor areas, in the superior parietal
lobule, and in the other cortical areas. Note that the activation is not always confined to anatomically well-defined areas; in this study, only the
activated pixels in SPL and motor areas, as defined in the text, were considered for further analysis.
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Figure 6. Graph of the width

(solid circles) and onset 16 T T
(crosses) vs. the response time
for one subject in the SMA

(16 trials). The width and
response time are significantly
correlated (y=1.04 x+.9 sec;

p <.0001); the onset and
response time are not
significantly correlated.
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two out of eight subjects. Shown in Figure 4 is the
average time course from 69 activated voxels in the SMA
in one subject, from 16 concatenated trials; the begin-
ning of the task period in each trial is marked by a
triangle at the bottom of the graph. Note that there are
16 activation peaks, one for each of the 16 pairings.

The main goal of our study was to determine the
specific role of the motor areas in this task. We also
included the SPL in the analysis, which we had studied
previously, though using a different slice orientation
and, hence, covering a somewhat different area (Richter
et al., 1997b). Consequently, seven regions of interest
(ROIs) were analyzed separately: Left and right SPL,
SMA, left and right premotor areas, and left and right
M1. Average time courses of activated pixels, as deter-
mined by a nonparametric analysis, were calculated for
each ROI in each subject.

In Figure 5, we display the response-time-locked
average time courses from one subject (16 trials). The
upper curve displays the time course from the left M1,
the lower one from the SMA. These time courses are
averaged over all 16 trials such that the response times
coincide at time index “0.” Qualitatively, we can see
that, in M1, the BOLD signal rises after the button press
and is narrow by comparison. In the SMA, on the other
hand, the leading edge of the peak increases gradually
before the button press; the trailing edge coincides
approximately with that of the signal from M1. This
means qualitatively that the signal onset in M1 is a
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monotonic or even linear function of the response time,
leading to constructive averaging when the time courses
are shifted by the response time. In the SMA, the signal
onset then seems to be independent of the response
time, while the trailing edge of the peak is, again, a
monotonic function of the response time.

In order to quantitate these observations, we defined
two time-course parameters for each single trial: the
onset of activation, and the width of the activation
waveform. In Figure 6, we show the correlation between
the onset/width of the SMA and the response time for all
16 experiments in one subject. Note that the width and
response time are positively correlated; the onset and

Table 1. Number of Subjects for Whom the Onset/Width are
Significantly (p<.05) Correlated with the Response Time

Onset Width
Left M1 1 1
Left parietal 1 2
Left premotor 0 5
SMA 0 4
Right M1 0 0
Right parietal 0 3
Right premotor 0 4
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Table 2. Parameters of the Linear Fit of the Onset and Width vs. the RT Across All Subjects

Onset Width

Slope Intercept (sec) p value Slope Intercept (sec) p value
Left M1 0.61 1.7 0.0002 0.10 5.40 >0.1
Left SPL ~0.03 3.1 >0.1 0.65 5.0 2x10°°
Left premotor —0.05 25 >0.1 0.96 22 <1072
SMA —0.04 2.6 >0.1 0.88 3.1 1x107°
Right M1 —0.28 10.5 >0.1 —0.07 5.8 >0.1
Right SPL —0.05 3.2 >0.1 0.79 4.4 1x107°
Right premotor —0.09 35 >0.1 0.92 3.0 3%x107°

Significant values (p<.05) are shown in bold.

response time are uncorrelated. We performed this
analysis for all subjects and ROIs; we also calculated
the p value for the null hypothesis that the onset or
width is independent of the response time. Shown in
Table 1 is the number of subjects for whom the onset or
width and response time are found to be correlated (i.e.,
for whom we could reject the null hypothesis of no
correlation).

In Table 2, the slopes, y-intercepts and p values for the
linear fit of the onset/width vs. RT are shown for all
subjects combined. We found that in the left M1, the
onset and response time were significantly correlated
with one another (p<.05), and that in all other areas the
width and response time were significantly correlated,
with the exception of the right M1, which showed no
significant correlation at all.

DISCUSSION
Technical Considerations

Since a single image can be obtained within 50 msec,
fMRI can detect the hemodynamic response induced by
neural activity in real time. To obtain meaningful high-
temporal resolution fMRI data, several approaches have
been used in the past: An “‘averaged single trial”
method (Buckner et al., 1996), a mixed-trial technique
(Clark, Maisog, & Haxby, 1998), and the general “Trial-
Based” (TB) design (Zarahn, Aguirre, & D’Esposito,
1997). Our method is a true single-trial technique
(Richter, in press; Kim et al., 1997; Richter et al.,
1997a; Richter et al., 1997b), and a subset of all
possible TB designs. In the averaged single trial
method, the fMRI signal acquisition was gated by the
onset of the presentation of some task, independent of
behavior. That approach is permissible in the limit
where behavior and brain function do not vary signifi-
cantly over repeated trials; this may limit the applic-
ability to some experiments. In addition, insofar as
intrinsic hemodynamic responses may be different in

different regions, information about temporal differ-
ences of neural activity is necessarily limited. For
example, it has been observed that the onset of the
activation in the left prefrontal cortex was delayed by
about 1 sec relative to that in the extrastriate areas
during the performance of word generation, and that it
decayed considerably more slowly (Buckner et al.,
1996). Since the difference in the onsets of neuronal
activity between the two areas is known to be only a
few hundred milliseconds, the difference in the fMRI
responses may be related to the difference in the
intrinsic hemodynamic responses (Buckner et al.,
1996). Thus, comparing the time courses across func-
tionally specialized regions is sometimes problematic.
Hence, sequential neuronal activity cannot be easily
determined simply from the difference in onset times
in single averaged time courses. In spite of this diffi-
culty, however, this approach is extremely valuable if
information is sought on a temporal scale more coarse
than the variations in hemodynamic response times.
The mixed-trial technique (Clark et al., 1998) uses a
sequence of random stimuli, presented in rapid suc-
cession; the data are then analyzed by correlating the
responses with the specific sequence pattern of each
individual stimulus type. This method makes it possi-
ble to assign the activation in different areas of the
brain to different tasks or aspects of a task, but, again,
the temporal resolution is limited to the possible
differences in the hemodynamic response times be-
tween regions. The general class of 7B designs ex-
ploits the ability to detect signal changes subsequent
to isolated single trials; it can, in the words of
Zarahn et al., ‘“utilize intertrial variance in uncon-
trolled behavioral measures to examine their func-
tional correlates” (Zarahn et al., 1997). While Zarahn
et al. suggested and used discretely varying para-
meters (like the handedness of a motor output),
our experiment uses a continuously varying para-
meter (the reaction time) as the behavioral measure.
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Time-resolved fMRI is a unique complement to the
other techniques mentioned, because hemodynamic-
response time differences between regions are can-
celed through the use of multiple individual trials.

Since no averaging over several executions of a task is
performed in time-resolved single-trial fMRI, SNR can be
poor. Thus, this method may often not be feasible,
particularly at low magnetic fields. However, even if
the sensitivity is not sufficient for the detection of a
single-task execution, it would still be possible to
perform many such single-trial executions of a task
separately. Selective signal averaging can then be
employed, using a behavioral parameter (for example,
the response time) as a criterion. An example of this
approach was shown in Figure 5. Then, temporal
characteristics (such as onset time and width) of the
fMRI responses could still be correlated with behavior-
al data such as the response time (Menon, Luknowsky,
& Gati, 1998). In this way, differences in the hemo-
dynamic response time could be subtracted out and
distinguished from the temporal behavior of neuronal
activity itself (Menon & Kim, 1999). Hence, this ap-
proach permits the determination of the specific
function of given brain areas in the context of a single
complex task, unlike the methods using indiscrimi-
nately averaged single time courses.

We concede that one of the main assumptions of
time-resolved fMRI is that the fMRI response is a linear
function of the neuronal activity. This is indeed sug-
gested by various studies; for example, a linear response
was measured in the visual cortex after a stimulation of
at least a few seconds (Boynton, Engel, Glover, &
Heeger, 1996). Since the response time in our task is
always longer than 2 sec, we have some reason to
believe that the assumption of linearity is valid here as
well; however, the available data are not sufficient to say
so with certainty.

Motor Activity During Mental Rotation

The goal of our study was twofold. First, we wanted to
determine if motor area activity occurs in relation to any
aspect of this implementation of the mental-rotation
task. We will assume that the multi-dimensional set of
trapezoids used for parametric analysis (see Methods) is
a reasonable approximation to the true activation shape.
Even if this were not the case, false positives would
occur only if there were a waveform present in the time
courses that is indeed well approximated by this model,
but not related to neuronal activation. Such a situation is
conceivable for motion or physiological artifacts; how-
ever, the focal nature of the activation maps (see Figure
3) suggests that this is unlikely: We would expect both
types of artifacts to be prevalent near large susceptibility
gradients, found at the edge of the brain or near the
ventricles. We conclude, then, that all seven areas under
investigation are active in this task (with the possible
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exception of the right M1, which was found to be active
in only five out of six subjects).

The second question probes the specific nature of
the activation in relation to the execution of the task.
Note that this task contains an overt motor compo-
nent, since the subject presses a button at the end of
the task period. All subjects used their right hand for
this; hence, we expect the activation due to this
component of the task to be mainly present in the left
M1. This is, indeed, borne out by the observation that
onset (but not width) and response time are generally
correlated in that area, as shown in Table 2 (with the
exception of one subject, which showed a correlation
between the width and response time here). Note in
this context that the statistical power of the experiment
increases considerably when all six subjects are ana-
lyzed together; we concede, however, that it is impli-
citly assumed here that the hemodynamic response is
similar in a given area of the brain between subjects.
Furthermore, we cannot rule out in general that the
left M1 is also involved in an aspect of the task that is
not related to the button press. However, we cannot
reject the null hypothesis that it is not involved, given
the statistical power of this experiment. The same is
true for the right M1; even though we see activation in
some aspect of the task, we cannot determine, by this
experiment, the details of its behavior.

The role of nonprimary-motor areas (here lateral and
medial BA 6) and the parietal lobe is more obvious. Let
us assume for the moment that our definition of the
width (upslope plus plateau time) is a good predictor
of the actual duration of neuronal activity. This, in turn,
would be consistent with a model of the hemodynamic
response, which assumes that the onset of neuronal
activity triggers the increase in blood flow, that the end
of the neuronal activity triggers the decrease in blood
flow back to the baseline, and that the delay times are
similar in both cases. This may be valid as long as the
fMRI signal is within the linear domain, and the dura-
tion of stimulation is longer than the intrinsic rise time.
A positive correlation between the width of the activa-
tion peak and the response time then means that the
duration of the hemodynamic response in nonprimary-
motor areas is a monotonically increasing and, maybe,
linear function of the response time. This would mean
in particular that the observed activation in those
motor areas is likely related to the very execution of
the mental-rotation task, and not only to an aspect of
the task which is only peripherally related to mental
rotation, such as, for example, the response selection
or the actual pushing of the answer button at the end
of the task. Another important issue is that of employ-
ing statistics across subjects. Ideally, we would like to
use data from every subject individually. However, as
shown in Table 1, definite conclusions can only be
reached for some of the subjects. Using all subjects
simultaneously provides information about the beha-
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vior of a brain area in general, but information about
individual subjects is lost, as, for example, the fact that
in one subject the width, and not the onset of activa-
tion in the left M1, was correlated with the response
time. This also assumes that the hemodynamic re-
sponse times in a given area are similar across subjects.
With these caveats, the combined statistics give valid
information about the usual role of a given brain area
in a complex task.

Some of the studies cited above did not find consis-
tently, or at all, activation in motor areas during similar
tasks; this discrepancy might be due to the differences in
the specific paradigm, or to the measuring method
employed. Most notable in this context is a study
comparing the mental rotation of abstract objects and
images of the hands (Kosslyn et al., 1998); a combined
conclusion from that study and ours might be that the
mental rotation of hand shapes activates the motor areas
to a considerably greater extent than the mental rotation
of Shepard and Metzler’s objects. An important distinc-
tion among the tasks involving dynamic imagery is that
of the internal and external perspectives (Isaac, Marks, &
Russell, 1986). If an internal perspective were assumed,
the subjects might imagine themselves carrying out a
movement, be it the movement of a body part or the
manipulation of an object in space, or both. If an
external perspective were assumed, the subject might
imagine somebody else’s manipulation of objects in
space, or the motion of objects due to an inanimate or
unspecified cause. It is possible that the involvement of
the areas subserving overt movements in a given task of
dynamic imagery might, in fact, be a function of the
subject’s perspective during the task, where these areas
are active if an internal perspective is assumed. This
would indeed imply that the subjects carry out this task
by imagining that they themselves manipulate the ob-
jects in space. However, the external perspective model
might still be consistent with our results, in light of the
existence of mirror neurons (to primary-motor neurons)
in area F5 of the macaque monkey, which are active
during the observation of movements (Rizzolatti &
Fadiga, 1998). Additional experiments must be designed
to separate the internal and external perspectives in the
subjects. It must be conceded that the low-rotation
speeds (and low-error rates) of our experiments suggest
that the task used here, while still a task of mental
rotation, is actually different from that of Shepard and
Metzler’s original experiment.

METHODS
Subjects

Eight normal subjects were studied according to the
guidelines of the Institutional Review Board of the
University of Minnesota. Informed consent was obtained
from all participants. Six subjects (three men and three
women, all right-handed) yielded fMRI data free of

obvious motion artifacts; only these will be considered
here.

Task

Before each study, the subjects practiced the mental-
rotation task for 5 to 10 min outside of the magnet. The
subjects then continued to practice the task inside the
magnet during the setup period for the fMRI experi-
ments. In these practice sessions, a pair of objects was
shown until the subject pressed a button to indicate the
decision; then the next pair of objects was shown.

For the fMRI studies, the images of the object pairs
were projected onto a screen in the magnet and viewed
by the subjects through a mirror. In the first period
(baseline period: Duration/20 sec), two identical ob-
jects at the same view angle were shown. Then, one or
both objects were replaced by different ones, signaling
the beginning of the second period (task period: Dur-
ation=response time). The new objects were, in gen-
eral, shown rotated with respect to each other about
their vertical axis. The subject decided whether the
objects were identical or mirror images of each other,
and indicated the decision by pressing one of two
buttons on a key pad, using the right hand. As soon as
a button was pressed, the objects reverted to the initial
baseline state. During each trial, the task was performed
once. Each experiment lasted approximately 60 sec.
Response times were recorded for each trial. Each
subject executed 16 trials in separate experiments with
randomized objects and rotation angles, rotation angles
ranged from 20° to 80°; five different objects and their
mirror images were used. No subject made more than
two errors in the 16 experiments; the average error rate
was 6 percent.

Data Acquisition

MRI experiments were carried out with a 4-T whole body
imaging system with a homogeneous birdcage coil. In
the first part of the session, anatomic images were
acquired with a conventional TurboFLASH pulse se-
quence (Haase, 1990). From these images, four axial,
10-mm-thick slices were chosen for functional imaging.
The four slices were contiguous, the topmost slice
containing M1. Blood Oxygenation Level Development
(BOLD)-based (Ogawa et al., 1992) functional images
were then acquired with a single-shot or two-shot echo-
planar imaging (EPI) sequence (echo time: 25 or 15
msec; repetition time (for four slices): 200 (one subject)
or 480 msec; field of view: (24x24x4) cm?; matrix size:
64x64x4).

Regions of Interest

Regions of interest were drawn based on brain anatomy
after a 3-D reconstruction of the multislice anatomical
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images, using both in-house software, and the software
package STIMULATE (Strupp, 1996). For the purpose of
this experiment, the regions were defined as follows:
The SMA was defined as the medial part of BA 6,
bordered caudally by the anterior lip of the precentral
gyrus and laterally by the medial part of the superior
frontal gyrus. The lateral-premotor area was defined as
the lateral part of BA 6 bordered caudally by the midline
of the precentral gyrus, rostrally by the anterior wall of
the precentral sulcus, and medially by the lateral part of
the superior-frontal gyrus. M1 was defined as the area
bordered caudally by the anterior wall of the central
sulcus and rostrally by the midline of the precentral
gyrus. The SPL was defined as the area posterior to the
postcentral sulcus, superior to the intraparietal sulcus,
and lateral to the midline. Activations generally encom-
passed various other areas as well (as seen in Figure 3);
however, only pixels wholly within these ROIs were
considered for analysis.

Data Analysis

Time-resolved fMRI experiments cannot easily be ana-
lyzed by conventional (parametric) methods. The objec-
tive is to measure the temporal parameters of the
activation peak and the response times independently
from each other; hence, the activation maps should
ideally be generated without bias toward a particular
functional form of the activation. However, the a priori
assessment of Type I errors is difficult in model-free
methods, precisely because the functional form of the
activation is not predefined and, hence, no hypothesis
external to the data is tested. Thus, we used a model-
free method (Fuzzy Clustering Analysis, FCA) in combi-
nation with a conventional-multidimensional-correlation
analysis to estimate Type I errors empirically.

For each subject, the 16 individual experiments were
preprocessed in the following manner: First, images
corresponding to the first 10 sec of the experiments
were removed to allow for the establishment of a steady-
state condition of transverse magnetization. This re-
sulted in 88 volumes per experiment (250 in one case).
Then, drift was removed by a linear correction of each
time course. No motion correction was carried out.
Furthermore, time courses with a standard deviation
of more than 3 percent were excluded from analysis so
as to minimize the contributions from large vessels
(Kim, Hendrich, Hu, Merkle, & Ugurbil, 1994; Somorjai
& Jarmasz, 1999). No smoothing was performed.

Fuzzy Clustering Analysis

Our implementation of FCA (Evldent® v. 5.0, see
www.ibd.nrc.ca/informatics/evident.html) is an exten-
sively modified and improved version (Jarmasz & Somor-
jai, 1998; Jarmasz & Somorjai, in press; Somorjai, Jarmasz,
Baumgartner, & Richter, in press; Somorjai & Jarmasz,
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1999) of Bezdek’s original algorithm (Bezdek, 1981,
Scarth et al., 1995). This algorithm minimizes an objective
function J,,, (U,V) via a two-stage iterative process. At the
first stage K initial centroids v, are selected, using a
deterministic algorithm (Tou & Gonzales, 1974).
U={uy,,} is the KxN matrix of fuzzy membership func-
tions, V={v,} denotes the K T-dimensional centroid
vectors, m>1 is the fuzzy index. The distance d,, is the
Euclidean distance from the nth time course (TC)
X =1X,1, Xp2y Xp3,e -+, Xpry to the kth cluster centroid
Ve=1Vk1, V2, Ug3,- - -, UVgrr. One then calculates, for each
voxel x,,, the cluster membership map {z,,}, 1<n<N to
each cluster k, 1<k<K. After the cluster-membership
map has been computed for all clusters, the second stage
consists of updating the cluster centroids vp. This two-
stage process is repeated until convergence is achieved.

Here, all 16 experiments were concatenated in time.
For each ROI, Evident® was asked to produce two and
only two clusters. The expectation was that one of these
would contain the activated voxel time courses (VICs),
whereas the other would consist of noise VICs. The FC
algorithm places VIC x,, in cluster 1 if its membership
value u;, is >.5. We then calculated a correlation map
between the cluster centroid and the VICs making up
the cluster. Only those VICs were considered active that
passed a correlation threshold, 7esh, calculated from a
preselected p value (e.g., p<.01 after a Bonferroni
correction for 16 repeated experiments) via the standard
relation between Pearson’s correlation coefficient » and
the ¢ value of Student’s ¢ test.

Parametric Analysis

In order to assess Type I errors (and to produce the map
shown in Figure 3), each VTC from each experiment was
correlated with a set of trapezoids of varying onset,
upslope, width, and downslope. Hence, our null hypoth-
esis is that a given time course cannot be represented by
such a trapezoid. The resulting correlation coefficients
were averaged over the 16 trials after a Fisher z-trans-
formation, and thresholded such that p<.01 after a
Bonferroni correction for multiple comparisons (the
set of trapezoids typically contained approximately
2000 members). Voxels found activated by this method
were then compared to the voxels found activated by
FCA. In each area, the overall false positive rate deter-
mined in this manner was below .05, with the exception
of the right motor cortex, where the overall false posi-
tive rate was approximately .5. Hence, the trapezoidal
model coincides largely with the result from FCA. The
FCA analysis was faster by approximately four orders of
magnitude than the parametric analysis.

Correlation Between fMRI and Response Time

Onset and width were approximated by a multidimen-
sional fit with a set of trapezoids of varying onset, rise
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Figure 7. Trapezoidal function used to fit the activation peaks. The four variable parameters are shown. The parameter “width” is defined as the

sum of the rise time and the plateau time.

time, plateau time, and fall time; we defined the width as
the sum of the rise time and the plateau time (Figure 7).
An example is given in Figure 8; shown are the time
courses from the 81 activated voxels in the right pre-
motor area for two experiments, together with the
trapezoidal fits. Note that the onset is independent of

response time, whereas the width is a monotonic func-
tion of the response time. Onset time and width were
correlated with response times. Then the confidence
levels for the null hypothesis that the onset or width is
not correlated with response times were calculated from
Pearson’s correlation coefficient.
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