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Abstract

The behavior of six congenitally hypothyroid and six normal control rats was assessed under forced alternation fixed-ratio, alternating
Ž .lever cyclic-ratio ALCR and progressive-ratio schedules of reinforcement. Hypothyroidism was produced by adding methimazole

Ž .MMI to the drinking water of pregnant dams from embryonic day 16 to postnatal day 25. There were no differences in behavioral
performance between MMI-treated and control animals under the fixed-ratio and progressive ratio schedules. There were also no
differences in circulating triiodothyronine levels between groups at the end of the study. Under the ALCR schedule, when alternation of

Ž . Žresponding was forced during the first three cycles but both levers choice were presented during the last three cycles correct lever
.active , the entire control group reached a competency criteria in nine sessions. In contrast, only two MMI-treated animals reached criteria

after 17 sessions, and the remaining four MMI-treated animals did not reach criteria by 30 sessions of training. These results suggest that
congenital hypothyroidism impairs learning when a discrimination between correct and incorrect operanda is made available. q 1999
Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Hypothyroidism during human perinatal development
results in profound alterations of mental capacities, neuro-

w xlogical functions, and metabolic processes 24,29,60 .
Mental retardation, motor deficits, deafness, lethargy, and
slowed metabolism are all characteristic in subjects af-

w xfected by congenital hypothyroidism 20,24,29,39,59,60 .
It has been proposed that neurological features are affected
by hypothyroidism during the second trimester of preg-
nancy, whereas postnatal hypothyroidism affects primarily

w xmetabolic pathways 5,6,15 .
Perinatal lack of thyroid hormone action has been used

to produce animal models of congenital hypothyroidism

) Ž .Corresponding author. Brain Science Center 11B , Veterans Affairs
Medical Center, Minneapolis, MN 55417, USA. fax: q1-612-725-2291;
e-mail: omega@maroon.tc.umn.edu

w x4,48,49,53 . In the rat, the basic cortical and cerebellar
maps and cell numbers are primarily established during
embryogenesis but the elaboration of dendrites, formation
of synapses, and refinement of cellular processes occur

w xduring postnatal development 34 . Most commonly, the
hypothyroid state has been induced by administering an-
tithyroid drugs such as propyl-thiouracil or methimazole
Ž . w xMMI 10 . MMI is a potent antithyroid drug which acts
by inhibiting the incorporation of iodide into thyroglobin,

w xthe thyroid hormone precursor protein 10 . However, since
MMI administration blocks the biosynthesis of thyroid
hormone but leaves the thyroid gland intact, the hypo-
thyroidism induced is reversible by removal of the drug
w x11 .

In the present study, MMI was administered to the
dams of the experimental animals in order to investigate
the effects of perinatal hypothyroidism on certain aspects
of behavior in the rat. The behavioral procedure used was
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w xa modification of the cyclic-ratio schedule 18,19 . This
modification has been previously utilized by Weldon et al.
w x63 to determine the effects of low doses of atropine

w xsulfate, and by O’Hare et al. 46 to evaluate subtle
behavioral changes following injection of aggregated b-
amyloid into rat hippocampus.

2. Materials and methods

2.1. Animals

ŽTwelve experimentally naive male Wistar rats Harlan:
.Madison, WI were used. The animals were 202–224 days

old at the beginning of the experiment. The dams of six
Ž . Žrats experimental group were treated with MMI Sigma:

.St. Louis, MO which was added to their drinking water
Ž .0.025% beginning on embryonic day E16 and continued
until postnatal day P25. The dams of the other six animals
Ž .control group did not receive any treatment. At the onset
of behavioral training rats were maintained at 85% of

free-feeding body weights and housed individually with
water continuously available in the home cage. The tem-
perature in the vivarium was maintained at 238C under a

Ž .12 h lightr12 h dark cycle lights on at 0700 h .

2.2. Apparatus

ŽSix two-lever Med Associates rat test chambers model
.ENV-007, Med Associates: Georgia, VT , enclosed in

sound attenuating compartments, were employed. The re-
Žinforcer was one 45-mg food pellet F0021, Bioserv:

.Frenchtown, NJ , which was delivered into a tray situated
midway between the levers. A Med Associates computer,
programmed in MED-PC computer language, controlled
the experiment and collected data.

2.3. BehaÕioral training

Sessions were conducted daily between the seventh and
ninth hour of the 12-h light cycle, and the daily allocation

Fig. 1. Lever arrangement with the cyclic-ratio schedule. During forced cycles, only one lever is extended and active at a time. During choice cycles, both
levers are extended continuously, but only one lever is active at a time. In the alternating cyclic ratio plot, black bars represent the left lever as active, and
the white bars represent the right lever as active.
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Fig. 2. Schematic of experimental design. Linear progression from beginning of weight restriction through completion of progressive ratio criteria shown.

of food was given approximately 30 min after the session.
Animals were initially trained to respond alternately be-
tween both levers under continuous reinforcement, i.e., one

Ž .response per reinforcer Fixed Ratio 1 or FR-1 , with the
active lever being extended into the chamber and the
inactive lever being retracted. The criterion for moving
through successive stages of training was the delivery of
100 reinforcers in 40 min. In this way, animals were

Žtrained under FR-1, FR-3, FR-5 and FR-10 10 responses
.per reinforcement . When they successfully completed

three consecutive days of obtaining 100 reinforcers under
FR-10, training under an arithmetic alternating lever

Ž .cyclic-ratio schedule ALCR was begun. This schedule
comprised an ascending followed by a descending se-

Žquence cycle of FR response requirements 3, 6, 9, 12, 15,
.18, 21, 21, 18, 15, 12, 9, 6, 3 for each reinforcer. The

animals were required to switch response levers after each

FR was completed. Cycles of increasing, then decreasing,
response requirements were presented six times during
each session. During the first three cycles only the active
lever was extended and the inactive lever was retracted,
whereas during the last three cycles both levers were
extended and the animal had to choose the correct lever
Ž .Fig. 1 . Data were collected only for the last three cycles
Ž .choice cycles of each session.

When testing finished under the ALCR, animals were
Ž .tested using a progressive-ratio 3 schedule PR-3 to assess

w xtheir motivation for food 30,36 . In this schedule, only the
left lever was extended and the third lever press was
reinforced. The number of responses required to obtain a
reinforcer was increased by three lever presses for each
successive reinforcer. The session continued until 5 min
elapsed without reinforcement. The number of responses
emitted to get the last reinforcer was considered the break

Fig. 3. Survival plot analysis. Control vs. MMI-treated group success in reaching alternating cyclic-ratio schedule criteria.
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Table 1
Probe trial to assess motor ability
Comparison of MMI-treated versus control animal response rate as a
function of cyclic ratio value. Mean response times increase for both
groups with increasing ratio values. At the higher ratio values, the
MMI-treated animals actually press faster than the controls, and signifi-
cantly more so at the highest value. In all cases, Ns6 per group

Cyclic-ratio value 3 6 9 12 15 18 21

MMI-treated mean time 5.75 8.88 11.33 10.61 14.76 16.10 16.96
MMI-treated S.E.M. 0.66 1.41 2.51 0.80 2.63 2.15 2.75
Control mean time 9.38 10.06 14.88 13.50 11.30 21.50 20.30
Control S.E.M. 2.02 1.08 1.39 1.20 1.45 1.70 1.72
Probability 0.11 0.52 0.80 0.06 0.48 0.07 0.04

point, representing the maximum amount of work a subject
would expend for one 45-mg reinforcer. A schematic of
the experimental design is shown in Fig. 2.

2.4. Assessment of thyroid status

At the completion of behavioral testing, triiodothyro-
Ž .nine T3 levels were assayed. Serum was collected from

each rat and assayed by the Minnesota Diagnostic Labora-
Ž .tory St. Paul, MN using a Coat-a-Count total T3 radioim-

Ž .munoassay kit Diagnostic Products: Los Angeles, CA .

2.5. Data analysis

Standard statistical methods were used to analyze the
data. In addition, because animals were trained to specific
criteria, the effect of treatment on performance was ana-

w xlyzed using survival analysis 13,37 . The effects of covari-
Ž .ates i.e., motivation and body weight were assessed using

w xCox’s proportional hazard model 12 . The programs 1L
and 2L of the commercially available statistical package

ŽBMDPrDynamic BMDP Statistical Software, Los Ange-
.les, CA, 1992 were used for this analysis.

3. Results

3.1. General

The experimental group showed typical signs of con-
w xgenital hypothyroidism 8,45,52,64 including reduced body

weight and delayed eye opening. At the beginning of
Ž .behavioral testing, the weight mean"S.E.M. of the ex-

perimental group was 496"8.7 g, as compared to 665"

21.4 g for the control group. Animals were maintained at
85% of original body weight throughout the testing period.

3.2. BehaÕior

Under the FR schedules, the mean number of sessions
to reach criteria was 3.5"1.2 sessions for the experimen-
tal group and 3.7"1.0 sessions for the control group. No
significant differences were found between the groups in
terms of the number of sessions to reach criterion using

w x Žsurvival analysis 13 Generalized Savage, Mantel–Cox
.test, P)0.5 for all FR schedules .

Under the ALCR schedule, the criterion for successful
training was completion all six cycles of the cyclic-ratio
schedule within 40 min. All animals in the control group
reached criterion within nine sessions. In contrast, only
two of the six rats in the experimental group reached
criterion after 17 sessions, and the remaining four animals

Ž .had not reach criterion even after 30 sessions Fig. 3 . The
differences between control and experimental groups were

Žstatistically highly significant Ps0.0004, Mantel–Cox
.test, survival analysis .

In order to test for potential motor impairments in the
experimental group, a probe trial was conducted in which

Žonly the active lever was extended and the inactive lever
.retracted throughout all six cycles of the ALCR schedule.

Under these conditions, all animals in the experimental
group successfully completed the session, suggesting that
the inability above to complete the schedule when both
levers were extended during the last three cycles of the
ALCR schedule was due to central rather than peripheral
effects of congenital hypothyroidism. Mean times to com-
plete each schedule component, S.E.M.s and probability

Ž .levels two-tailed t-test are shown in Table 1.
It is noteworthy that the four MMI-treated animals

which did not reach criterion, consistently responded dur-
ing the first three cycles of the schedule, when only the
active lever was extended into the chamber, indicating they
were not motorically impaired. However, when required to
alternate between levers with both levers were extended in
the choice situation, half of the MMI-treated animals ceased

Ž .responding Fig. 4: B2, B5, B6 . Animal B1 took 16
sessions to reach the sixth cycle, and only once success-

Ž .fully completed all the required cycles Fig. 4 . In contrast,
Ž .all control animals reached criterion top half, Fig. 4 .

The motivation level of the animals was assessed using
the PR schedule. In this schedule, the three performance
variables included the break point, the total number of
level presses, and the number of pellets delivered. The
average values of these measures from the last six sessions
were calculated for each animal, and their differences
tested between groups. There were no significant differ-

Žences between the groups Mann–Whitney rank sum test,

Fig. 4. Plots of individual animal’s performance on the alternating lever cyclic-ratio schedule. Control animals are listed as A1–A6, and MMI-treated
animals are listed as B1–B6. Each plot represents the number of completed cycles in successive sessions. Sessions ended after 40 min or when six cycles
were completed. After 3 days of completing all six cycles within 40 min, the animal was considered to have reached criterion and moved off the ALCR
schedule.
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.Ps0.1 on any of the performance measures. As a further
assessment of motivation, the mean number of reinforcers
obtained during the last three days of the PR schedule, and
mean body weights during the last 3 days of the cyclic
ratio schedule were determined. Neither of these factors,

Žalone or in combination, was statistically significant Ps
0.71 for PR-3 reinforcers; Ps0.1 for weight; and Ps0.21
for both combined; Global chi-square test in Cox propor-

.tional hazards model .

3.3. Thyroid status

Ž .The T3 levels mean"S.E.M. were 91.2"8.6 and
Ž .97.6"5.3 ngrdl for the control Ns5 and the experi-

Ž .mental Ns6 rats, respectively, at 328–350 days of age.
Ž .These values did not differ significantly t-test, P)0.5 .

4. Discussion

In human subjects, congenital hypothyroidism causes
profound deficits in cognitive abilities and neurological
function, and it appears that thyroid hormone is crucial for
brain development during the last trimester of pregnancy
w x38,54,56 . Various methods have been employed to pro-
duce this condition in a variety of animal species including

w xrat, mouse lamb, goat, and marmoset 4,48,49,53 . In the
rat, the methods used to induce hypothyroidism include
feeding low iodine diet during pregnancy, administration
of antithyroid drugs perinatally, and destruction of the
thyroid gland surgically or by irradiation at, or shortly
after, birth. The fact that thyroid hormone influences brain
development postnatally in the rat makes it an attractive
animal model for the human condition of congenital hypo-
thyroidism since experimental manipulations can be con-
ducted during approximately the first three postnatal weeks
without interventions in utero. In addition, rat behavior has
been studied extensively and quantitatively during this
century, and a wealth of information is available on the
basis of which to evaluate the effects of potential brain
damage. Therefore, we chose the rat as our experimental
model of congenital hypothyroidism and assessed the pres-
ence and severity of behavioral deficits using lever press-
ing and operant conditioning techniques.

Previous studies have been focused on spatial recogni-
tion, navigation, or motor tasks. In general, these studies
have documented a decrease in perinatally hypothyroid
animals’ ability to learn and habituate to maze tests, and an
increase in spontaneous activity. Such assessments have

w xincluded the righting reflex 8,52,64 , exploratory behavior
w x w x44,58,61,62 , home orientation 35 , maze learning
w x w x1,9,28 , and avoidance learning 27,57,58 . Motor activi-
ties which have been characterized in the perinatal hy-
pothyroid rat include delays in onset of locomotor activi-

w xties 35,51,52 , and hyperactivity, as assayed by open field

w xexploration 1,27 , enclosed automatic motion detectors
w x w x9,25,28 , and running wheel performance 14,62 . The
increase in locomotor activity in transiently hypothyroid
rats, as compared to control animals, may be due to the
fact that control animals habituate to their test surround-
ings after a few trials, while hypothyroid rats maintain the
same level of exploratory and spontaneous movement over

w xtime 9 . Finally, other experiments involving lever-pressing
tasks have been focused either on adult onset hypothyroid-

w x w xism 21,22,50 , or on simple FR schedules 14,58 . Schalock
w xet al. 58 found no significant differences between control

and perinatally hypothyroid rats, whereas Davenport and
w xHennies 14 reported hyperactivity and reduced fearful-

ness in perinatally hypothyroid rats using FR schedules.
In the present study, we investigated operant behavior

based on memory-type functions of ‘‘choice’’ or switching
Žrules. Throughout a series of FR schedules FR-1, FR-3,

.FR-5 and FR-10 the performance of the hypothyroid
animals did not differ significantly from that of control
animals. Under these schedules, all rats were required to
alternate responding from left to right lever, during forced
responding conditions; that is, when only the active lever
was extended into the operant test chamber. The predeter-
mined criteria for advancing from one FR schedule to the
next was met by both the control and the experimental
groups, with no statistically significant differences between
the two. However, the situation was very different under
the ALCR schedule in which responding during the first
three cycles was forced and responding during the last

Žthree cycles was open to choice between the correct ac-
. Ž .tive and incorrect inactive lever. In this case, the MMI-

treated animals were severely impaired.
It is possible that this deficit in performance could be

due to a motor defect in lever pressing andror a reduced
motivation to work for a reward. However, separate as-
sessments of these two factors showed that the experimen-
tal animals did not differ from the control ones in either of
these aspects. Specifically, the motor ability was tested in
a probe trial in which responding during all six cycles of

Ž .the ALCR schedule was forced i.e., without choice in-
stead of having three cycles of two-lever choice. The
MMI-treated animals had no difficulties with this task and
all of them successfully completed the session. In fact, it
can be seen in Table 1 that these rats generally completed
individual schedule components at a higher rate than the
control group and responded at a significantly higher rate
during the highest schedule component. Finally, possible
motivational differences between the MMI-treated and
control groups were investigated by testing both groups
under a PR-3 schedule. This schedule requires an ever
increasing number of presses for each successive rein-
forcer delivered. The break point is the number of presses
required for the next reinforcer which exceeds the value
the animal will press for a reinforcer. This number is
considered to be a measure of reinforcing value or motiva-

w xtional strength of the food reinforcer 30,31,36 . Under the
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PR schedule there were no significant differences between
the groups.

The results of this study suggest that congenital hypo-
thyroidism does not affect motor activity or motivation.
Similarly, circulating T3 levels, as assessed by serum T3
assay, were also unaffected. However, perinatal hypo-
thyroidism did affect learning. The experimental group
demonstrated difficulty in acquiring lever switching behav-
ior when both levers were made available under the ALCR
schedule. It would appear that when an MMI-treated ani-
mal made a lever switching error, the animals perseverated
on the incorrect lever until lever pressing extinguished.
Successful performance on the ALCR schedule at mini-
mum requires the motor ability to press, the motivation to
press, and the ability to rememberrknow to switch levers
after receiving a reward. The perinatally hypothyroid rats
in this study had normal motor abilities and motivation
levels, but they were severely impaired in the execution of
the ALCR schedule.

Traditionally, deficits of ‘‘executive functions’’ affect-
ing choice behavior in human subjects have been associ-
ated with frontal cortex lesions. A classic task used to
assess frontal lobe damage is the Wisconsin card sorting
task in which subjects are rewarded for choosing certain

Ž .cards based on criteria like a color or a shape and a rule
Ž . w xfor reward changes i.e., from green to square 26,47 .

The key feature of this task is that the reward rule changes
between blocks of trials. Subjects with frontal lobe damage
typically perseverate and do not apply the new rule. A
similar deficit has been identified in monkeys with lesions
of specific regions of the prefrontal cortex located around
the principal sulcus. Such lesions, as well as lesions in the
basal ganglia, result in deficits in delayed response and

w xdelayed alternation tasks 16,17,23 . The results of the
present study point to a qualitatively similar inability of
the congenitally hypothyroid rats to adopt the new rule
when given a choice. Therefore, damage of the prefrontal
cortex andror the basal ganglia may underlie the perfor-
mance deficits. In fact in the rat, both the basal ganglia and
the cerebral cortex have been shown to be affected by
perinatal hypothyroidism. Changes in the caudate as a
result of early postnatal hypothyroidism in the rat have
included delays in neuronal proliferation, inhibition of
dendritic arborization, and reduction of dendritic spines
w x41,42 . While a developmental growth spurt was seen
between postnatal days 14–30, it was not enough to return
hypothyroid animals to control levels of these parameters,
and similar changes are found in the cerebral cortex. In
rats made hypothyroid at postnatal day 10 by thyroid-
ectomy and examined at postnatal day 80, it has been

w xshown that the number of spines 2 , apical dendrite den-
w x w xsity 32,55 , and basal dendritic arborization 33 of layer 3

pyramidal cells from the visual cortex were significantly
reduced as compared to control animals. In perinatal hy-
pothyroid rats, the total volume of the prelimbic area of the
medial prefrontal cortex was significantly reduced while

there were no differences in the numbers of layer 3
w xpyramidal cells as compared to controls 43 . Finally, a

developmental study of the effect of perinatal hypothyroid-
ism on somatic sensory cortex has found no changes in
thalamocortical topography or somatotopy, but that there
were changes in dimensions of the barrel fields and pos-

w xtero-medial barrel subfields 7 . We, along with others,
suggest that perhaps the main effect of congenital hypo-
thyroidism on neural development is to reduce the amount
of time in which the nervous system is exposed to agents

w xcoordinating developmental processes 3,7,40 . In this
manner, arborization and synaptogenesis would be primar-
ily affected because there would not be enough time to
complete the process of normal development. In other
words, the developmental ‘‘window’’ is open for a shorter
time, but the brain template is not adjusted, so some things
do not get the amount of time needed to develop normally.
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