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Abstract Brain-machine interface (BMI) efforts have
been focused on using either invasive implanted elec-
trodes or training-extensive conscious manipulation of
brain rhythms to control prosthetic devices. Here we
demonstrate an excellent prediction of movement tra-
jectory by real-time magnetoencephalography (MEG).
Ten human subjects copied a pentagon for 45 s using
an X-Y joystick while MEG signals were being re-
corded from 248 sensors. A linear summation of
weighted contributions of the MEG signals yielded a
predicted movement trajectory of high congruence to
the actual trajectory (median correlation coefficient: r
= 0.91 and 0.97 for unsmoothed and smoothed pre-
dictions, respectively). This congruence was robust
since it remained high in cross-validation analyses
(based on the first half of data to predict the second
half; median correlation coefficient: r = 0.76 and 0.85
for unsmoothed and smoothed predictions, respec-
tively).
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In the past several years, considerable progress has
been made in the precision of movements controlled
through the use of implanted microelectrode arrays

(Wolpaw et al. 2000; Taylor et al. 2002; Wessberg and
Nicolelis 2004). Improvements in hardware and data
processing, in conjunction with closed-loop feedback
training, have shown good promise for providing
functional movement to the neurologically impaired.
At the same time, substantial improvements have been
achieved in signal processing, training techniques and
interpretation of data in noninvasive brain-machine
interface (BMI) using electroencephalography (EEG)
(McFarland et al. 1997; Wolpaw et al. 2000; Wessberg
and Nicolelis 2004; Scherer et al. 2004; Hinterberger
et al. 2004). For example, four human subjects (two of
whom were paralyzed but had normal arm function),
working with 64-lead EEG and adaptive algorithms,
demonstrated two-dimensional (2-D) control over a
computer cursor following many weeks of training
sessions (Wolpaw and McFarland 2004). However
promising these advances may be, there are drawbacks
to both approaches. For example, information transfer
rates for both invasive and noninvasive techniques are
often low (Wolpaw et al. 2000). Cortical electrode
implantation carries inherent risks and may not be an
available option for some patients. Furthermore,
studies of implant longevity in rodents, while encour-
aging due to the limited fibrous encapsulation, have
shown viability on the order of only months and not
years (Vetter et al. 2004). On the other hand, EEG-
based BMI has focused on keyboard interfaces con-
trolled by effortful changes in cortical rhythm(s), thus
requiring substantial training time and providing lim-
ited variables over which a subject may gain control. In
this study, we explored the feasibility of using real-time
magnetoencephalography (MEG) to predict 2-D
movement trajectories in a drawing task. For this
purpose, we applied analysis methods developed pre-
viously in the context of neurophysiological recordings
(Georgopoulos et al. 1988).

Ten right-handed subjects (five women and five men)
participated in these experiments as paid volunteers (age
range, 23–41 years; mean ± SD, 30±6 years). The
study protocol was approved by the appropriate insti-
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tutional review boards. Informed consent was obtained
from all subjects prior to the study according to the
Declaration of Helsinki. Stimuli were generated by a
computer and presented to the subjects using an LCD
projector. Subjects were presented with a red fixation
point surrounded by a pentagon. When the fixation
point turned green, the subjects drew the shape contin-
uously for 45 s by moving an X-Y joystick using their
right hand. The joystick was located at arm’s length and
out of the visual field. Subjects were instructed to fixate
on the central point throughout the task. They were also
instructed to copy the shape counter-clockwise at their
own speed. No visual feedback was provided. The fixa-
tion point and the pentagon were presented to the sub-
jects using a periscopic mirror system which placed the
image on a screen approximately 62 cm in front of the
subject’s eyes. The pentagon subtended approximately
10� of visual angle. MEG data were collected using a 248
sensor whole-head axial-gradiometer system (Magnes
3600WH, 4D-Neuroimaging, San Diego, CA). MEG
data, electrooculogram data, and joystick output (0.1–
400 Hz) were acquired simultaneously at 1017.25 Hz.
The cardiac artifact was removed using event synchro-
nous subtraction (Leuthold 2003). X-Y joystick coordi-
nates were determined by converting from mV to end-of-
joystick excursion.

The first step in data analysis was a multivariate
linear regression in which the time courses of the 248
sensors were the independent variables and the corre-
sponding time courses of the X and Y coordinates of
the joystick were the dependent variables. This analysis
was implemented using the double-precision fast Gi-
vens transformation of the IMSL statistical and
mathematical library, called from FORTRAN pro-
grams (Compaq Visual FORTRAN Professional edi-
tion version 6.6B). This analysis yielded X- and Y-
coefficients for each sensor. Next, predicted X- and Y-
trajectories were computed by a linear summation of
the weighted time-varying contributions from the 248
sensors, as follows:

Xt ¼ ax þ
X248

i

bixSiðtÞ ð1Þ

Yt ¼ ay þ
X248

i

biySiðtÞ ð2Þ

where Xt, Yt, are the predicted X- and Y- trajectories at
time t; ax, ay are constants; bix, biy are X- and Y-
regression coefficients for sensor i; and Si (t) is the signal
from sensor i at time t. In subsequent analyses the
independent variables consisted of the above plus k=19
additional sample points of the 248 MEG signals pre-
ceding the currently predicted trajectory point at t, as
follows:

X 0t ¼ a0x þ
X248

i

Xk¼0;19

k

bikxSiðt � kÞ ð3Þ

Y 0t ¼ a0y þ
X248

i

Xk¼0;19

k

bikySiðt � kÞ ð4Þ

This is a reasonable procedure, since changes in
activity in most motor-related cortical areas precede
movement onset. The quality of the prediction was
quantified by calculating the Pearson correlation coeffi-
cient between the ms-by-ms actual and predicted data.
Summary statistics (median, range) were obtained from
pooled X- and Y-data across subjects. Finally, we car-
ried out cross-validation analyses in which only the first
half (22,500 time points; ‘‘training’’ set) were used for
the calculation of weighting coefficients from the first
half (22.5 s of the data; ‘‘training’’ set). Then trajectory
predictions were computed (using Eqs. 3, 4) for both the
training set as well as for the remaining cross-validated
data points (‘‘test’’ set). This cross-validation is impor-
tant as a test of the feasibility of this approach to control
a prosthetic device in real-time.

Figure 1a shows an example from one subject of ac-
tual (blue lines) and predicted (fuchsia lines) X- and Y-
trajectories, without smoothing, using Eqs. 3 and 4; very
similar, good predictions were also obtained in the
remaining subjects. The modulated neural prediction
disappeared when the neural data were shuffled in time
(data not shown), which means that the trajectory
information resides in the temporal sequence of the
MEG signal. The prediction was further improved fol-
lowing smoothing (Fig. 1b), and yielded 2-D trajectories
practically indistinguishable from the actual movements
(Fig. 1c). All predictions were of the same high quality
for both X- and Y-data.

Next, we evaluated the robustness of these results by
cross-validating the predictions between the first and
second half of the data. As can be seen in Fig. 2, the
predictions for the test set were very good, although a
higher variance was present. Overall, these analyses
documented the robustness of the results and the
validity of the approach, as follows. The correlation
coefficients between the actual and predicted trajecto-
ries in the first half were high (unsmoothed data:
median r=0.91, range 0.83–0.94; smoothed data:
median r=0.97, range 0.95–0.99), and remained high in
the second, cross-validated half (unsmoothed data:
median r=0.76, range 0.59–0.86; smoothed data:
median r=0.85, range 0.68–0.92).

These results show, for the first time, that there is
adequate and robust information in the non-invasive
MEG signal for real-time prediction of drawing move-
ment trajectories. Moreover, this is the first time that
such information of high quality has been extracted
from single unaveraged trials. This should be very easy
to implement in real time, given that the time-consuming
part of the procedure is calculating the X-Y coefficients
for each sensor, which can be done at leisure and for an
extensive training set. In contrast, the calculation of the
prediction for prosthetic control is almost instantaneous
since it involves only multiplications and summations.
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However, the use of MEG for ambulatory prosthetic
control is obviously impractical. Preliminary results
from our laboratory (F. J. P. Langheim, A. C. Leuthold,

J. J. Stanwyck, S. M. Lewis, S. Sponheim, A. P. Geor-
gopoulos, unpublished observations; work in progress)
indicate that good motor predictions can be also ob-

Fig. 1 Actual (blue lines) and
predicted (fuchsia lines) X- and
Y-trajectories using 20 time-
points per sensor (see text,
Eqs. 3, 4), based on the whole
sample. a Unsmoothed
predictions, b cubic-spline
smoothed predictions, c X-Y
plots of data in b
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tained using EEG signals which are easy to record in an
ambulatory setting.
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Fig. 2 Actual (blue lines) and
predicted (fuchsia lines) X- and
Y-trajectories using 20 time-
points per sensor for training
and test data. Coefficients were
calculated from the training set
and were applied to predict the
test set
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