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We visualized synchronous dynamic brain networks by using
prewhitened (stationary) magnetoencephalography signals. Data
were acquired from 248 axial gradiometers while 10 subjects
fixated on a spot of light for 45 s. After fitting an autoregressive
integrative moving average model and taking the residuals, all
pairwise, zero-lag, partial cross-correlations (PCCij

0) between the i
and j sensors were calculated, providing estimates of the strength
and sign (positive and negative) of direct synchronous coupling
between neuronal populations at a 1-ms temporal resolution.
Overall, 51.4% of PCCij

0 were positive, and 48.6% were negative.
Positive PCCij

0 occurred more frequently at shorter intersensor
distances and were 72% stronger than negative ones, on the
average. On the basis of the estimated PCCij

0, dynamic neural
networks were constructed (one per subject) that showed distinct
features, including several local interactions. These features were
robust across subjects and could serve as a blueprint for evaluating
dynamic brain function.

neural networks � synchrony � time-series analysis

A major use of whole-head magnetoencephalography
(MEG) has been to localize sources of neural activity.

Because this problem does not have a unique solution, the
results of such analyses vary, depending on assumptions (single
vs. multiple sources), realistic measurements (shape of the
skull, ‘‘forward modeling’’), specific methods of analysis, and
subjective judgment. In addition, data typically are filtered
down to �45 Hz and below, and analyses are performed based
on the averages of many trials. Although the localization of
activation by using MEG is useful, other functional neuroim-
aging methods provide less equivocal information (i.e., infor-
mation that does not depend on assumptions, etc.). These
methods include functional magnetic resonance imaging
(fMRI) and positron-emission tomography (PET). With re-
spect to the temporal resolution and time course of changes in
brain activity, MEG and electroencephalography (EEG) have
the edge. In such studies, data from single sensors are pro-
cessed, typically many trials are averaged and aligned on a
specific event of interest, and the shape of the time course is
examined. The resulting MEG trace (or the event-related
potential in EEG studies) provides valuable information on
the timing of brain events with respect to behavior. A similar
approach in fMRI, the event-related design, although useful,
lacks the temporal precision of MEG and EEG signals.

In this article, we report results on a different problem,
namely the use of whole-head, high-density MEG to investi-
gate the interactions among neural populations. It is obvious
that neural interactions underlie all brain functions, from sleep
and wakefulness to higher cognitive processes. Evaluating the
strength and spatial patterns of these interactions could con-
tribute substantially to our understanding of brain function
and its relationship to behavior. Indeed, several approaches
during the past 15 years have been focused on brain networks,
based on data gathered by using various techniques, including
PET, fMRI, EEG, MEG, and neurophysiological recordings

(single-cell recordings and local field potentials). Although all
of these approaches have proved very useful, they are con-
strained by limitations of the corresponding methods. For
example, networks derived from PET or fMRI come from long
time scales (seconds or longer) and multiple trials; networks
constructed from single-cell recordings are confined to small
brain regions; and networks derived from EEG, MEG, or local
field potentials come from averaged data and�or sampled at
lower time resolution. In this study, we applied time-series
analyses to derive synchronous dynamic networks from single
trials, unaveraged and unsmoothed, recorded from 248 MEG
sensors at a 1-ms temporal resolution during a simple eye-
fixation task.

Methods
Ten right-handed human subjects (five women and five men)
participated in these experiments as paid volunteers (age range,
25–45 years; mean � SEM, 33 � 2 years). The appropriate
institutional review boards approved the study protocol, and
informed consent was obtained from all subjects before the
study.

Stimuli were generated by a computer and presented to the
subjects by using a liquid crystal display projector. Subjects
fixated on a blue spot of light in the center of a black screen for
45 s. The fixation point was presented by using a periscopic
mirror system, which placed the image on a screen �62 cm in
front of the subject’s eyes. MEG data were collected by using
a 248-channel axial gradiometer system (Magnes 3600WH;
4D-Neuroimaging, San Diego). The cryogenic helmet-shaped
Dewar of the MEG was located within an electromagnetically
shielded room to reduce noise. Data (0.1–400 Hz) were collected
at 1017.25 Hz. To ensure against subject motion, five signal coils
were digitized before MEG acquisition and consecutively acti-
vated before and after data acquisition, thereby locating the head
in relation to the sensors. Pairwise distances between sensors
were calculated as geodesics on the surface of the MEG helmet.
Eye movements were recorded by using electrooculography. For
that purpose, three electrodes were placed at locations around
the right eye of each subject. The electrooculogram signal was
also sampled at 1017.25 Hz.

The acquired MEG data were time series consisting of
�45,000 values per subject and sensor. The cardiac artifact
was removed from each series by using event-synchronous
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subtraction.‡‡ Potential artifacts from eye blinks and eye move-
ments were eliminated by removing from analysis all data from
the sensors with �100 fT��Hz of power in the 0–1-Hz fre-
quency band.

The main objective of the present study was to assess the
interactions between time series in pairs of sensors. For that
purpose, individual series need to be stationary, i.e., ‘‘prewhit-
ened’’ (1); otherwise, nonstationarities in the series themselves
can lead to erroneous associations (1–3). Therefore, the first step
in our analyses was to model the time series and derive stationary
(or quasistationary) residuals from which to compute pairwise
association measures, such as cross-correlations (4). All analyses
described below were performed on single-trial, unsmoothed,
and unaveraged data. A Box–Jenkins autoregressive integrative
moving average (ARIMA) modeling analysis (1) was performed
to identify the temporal structure of the data time series by using
25 lags, corresponding to �25 ms. We carried out these analyses
on 45,676 time points. After extensive ARIMA modeling and
diagnostic checking, including computation and evaluation of
the autocorrelation function and partial autocorrelation func-
tion of the residuals, we determined that an ARIMA model of
25 autoregressive orders (equal to the �25-ms lags), first-order
differencing, and first-order moving average were adequate to
yield residuals that were practically stationary with respect to the
mean, variance, and autocorrelation structure. Residuals were
estimated by using the SPSS Version 10.1.0 statistical package for
WINDOWS (SPSS, Chicago). The zero-lag cross-correlation be-
tween pairs of stationary residuals was computed by using the
DCCF routine of the International Mathematics and Statistical
Library (COMPAQ VISUAL FORTRAN PROFESSIONAL EDITION Ver-
sion 6.6B, Compaq, Houston). From these data, the partial
zero-lag cross-correlation PCCij

0 between the i and j sensors
and its statistical significance were computed for all sensors.
To calculate descriptive and other statistics, PCCij

0 was trans-
formed to zij

0 by using Fisher’s z-transformation (5) to normalize
its distribution: zij

0 � 0.5 [ln(1 � PCCij
0) � ln(1 � PCCij

0)].

Results
General. Given 248 sensors, a total of 248!�2!246! � 30,628 PCCij

0

were possible per subject for a grand total of 30,628 � 10
subjects � 306,280 PCCij

0. Of those correlations, we analyzed
285,502 (93.2%) after excluding records with eye blink artifacts;
81,835�285,502 (28.7%) of those correlations were statistically
significant (P 	 0.05). Of all valid PCCij

0, 146,741 (51.4%) were
positive and 138,761 (48.6%) were negative. The average
(�SEM) positive zij

0 was 0.0112 � 0.00004 (maximum zij
0 � 0.38;

PCCij
0 � 0.36); the average negative zij

0 was �0.0065 � 0.00002
(minimum zij

0 � PCCij
0 � �0.19). The absolute values of these

means differed significantly (P 	 10�20; Student’s t test), the
average ��zij

0� being 72% higher than the average ��zij
0�. Examples

of spatial patterns in the distribution of synchronous coupling
between a sensor and all other sensors are illustrated in Figs. 1
and 2.

Relation Between PCCij
0 and Intersensor Distance. Overall, PCCij

0

varied with the distance, dij, between sensors i and j. In general,
sensors closer to each other tended to have positive PCCij

0. The
average intersensor distance d̄ij for negative zij

0 was 24% longer than
for positive zij

0. Specifically, d̄ij (�zij
0) was 198.92 � 0.21 mm (n �

138,700), and d̄ij (�zij
0) was 160.12 � 0.24 mm (n � 146,675).

Overall, there was a strong and highly significant negative associ-
ation between zij

0 and the log-transformed dij, ln(dij). The Pearson
correlation coefficient between signed zij

0 and ln(dij) was �0.519

(P 	 10�20). This relation indicates that the strength of synchronous
coupling tended to fall off sharply with intersensor distance.

Synchronous Dynamic Neural Networks. The PCCij
0 is an estimate of

synchronous coupling between neuronal populations in which the
absolute value and sign of PCCij

0 denote the strength and kind of
coupling, respectively. If the neural ensembles sampled by the 248
sensors are considered nodes in a massively interconnected neural
network, then the PCCij

0 can serve as an estimate of the dynamic
synchronous interactions between these nodes. We visualized such
a massively interconnected network by connecting the 248 nodes
with green or red lines, denoting positive or negative coupling,
respectively. Figs. 3 and 4 show a thresholded and scaled view of this
network, averaged across the 10 subjects; regional variations in
interactions were present and consistent across subjects (Figs. 5 and
6). There are several interesting features in this network, which
follow: (i) most of the next-neighbor interactions are positive; (ii)
most of negative interactions occur at longer distances; (iii) inter-

‡‡Leuthold, A. C., 33rd Annual Meeting of the Society for Neuroscience, Nov. 8–12, 2003,
New Orleans (abstr.).

Fig. 1. Spatial patterns of PCCij
0 for three separate sensors (large white

circles). Only statistically significant PCCij
0 are plotted. The statistical signifi-

cance threshold was adjusted to account for 247 multiple comparisons per
plot, according to the Bonferroni inequality: the nominal significance thresh-
old is P 	 0.05, corresponding to an actual threshold used of P 	 0.05�247 (i.e.,
P 	 0.0002). Green and red denote positive and negative PCCij

0, respectively.
Small white dots indicate the location of the 248 sensors, projected on a plane.
Data are from one subject.
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actions with centrally located sensors are relatively sparse; and (iv)
interhemispheric interactions are infrequent, probably because of
the longer distances involved. In addition, systematic variations in
the local density of interactions can be distinguished qualitatively,
as follows (in counterclockwise direction). There were nine regions
of positive interactions (Fig. 3), consisting of sensors overlying the
following brain regions: left anterior-frontal (1P), left dorsal-
frontal (2P), left lateral-frontal-temporal (3P), left parietal (4P),
left parietal-occipital (5P), right occipital (6P), right parietal-
temporal (7P), right temporal (8P), and right frontal (9P). For
negative interactions (Fig. 4), seven regions could be distinguished,
consisting of sensors overlying the following brain regions: left
anterior-frontal cortex (1N), left dorsal-frontal (2N), left lateral-
frontal-temporal (3N), left parietal (4N), occipital (5N), right
parietal (6N), and right frontal (7N). Several of the positive and
negative interactions were spatially overlapping.

Robustness of Network Across Subjects. Remarkably, neural net-
works constructed as above were very similar across subjects
(Figs. 5 and 6). We quantified and assessed overall network
similarity between all subject pairs by calculating the Pearson
correlation coefficient across all zij

0 (i.e., all i and j sensors) of the
network. The correlation coefficients obtained were very high

and highly significant (median � 0.742; range, 0.663–0.839; P 	
10�20 for all correlations; �20,000 degrees of freedom). These
findings suggest a common network foundation.

Discussion
This work assessed synchronous dynamic coupling between
single-trial MEG time series made stationary by using ARIMA
modeling (4). Therefore, the results obtained are valid estimates
of this coupling, uncontaminated by nonstationarities typically
present in raw MEG data. In this article, we focused on zero-lag
cross-correlations, which estimate synchronous coupling be-
tween two time series. From these correlations, we then com-
puted partial correlations, which provide an estimate of sign and
strength of direct coupling between two sensor series because
possible effects mediated indirectly by other sensors are re-
moved. Finally, the PCCij

0 enabled us to construct a synchronous
dynamic network in which the sign and strength of the PCCij

0

served as estimates of the sign and strength of direct neuronal

Fig. 2. Spatial patterns of PCCij
0 for three more sensors. Conventions are as in

Fig. 1. Data are from the same subject.

Fig. 3. Massively interconnected network, averaged across the 10 subjects
(mean zij

0 converted to PCCij
0, see Methods). Green denotes positive PCCij

0.
Numbers in white denote local regions of higher density of interactions. The
statistical significance threshold was adjusted to account for 30,628 multiple
comparisons (i.e., all possible PCCij

0, see text), according to the Bonferroni
inequality: the nominal significance threshold is P 	 0.001, corresponding to
an actual threshold used of P 	 0.001�30,628 (i.e., P 	 0.00000003).

Fig. 4. Massively interconnected network, averaged across the 10 subjects
(mean zij

0 converted to PCCij
0, see Methods). Red denotes negative PCCij

0. Con-
ventions are as in Fig. 3.
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population coupling. In general, PCCij
0 were smaller than the raw

cross-correlations because all other possible 246 associations in
the sensor ensemble were accounted for. However, small-
amplitude interactions are the rule for stability in massively
interconnected networks. For example, in a previous study of
such networks (6), the normalized connection strength ranged
from �0.5 to 0.5 at the beginning of training of the networks but
ranged from approximately �0.2 to 0.2 in the trained, stable
network. Comparably, in the present study, the range of PCCij

0

was similar (�0.19 to 0.36).
PCCij

0 were positive or negative and of various strengths
depending on the particular pair of sensors and their distance,
such that PCCij

0 tend to be higher at short distances. It could be
argued that this tendency might be due to multiple detectors
viewing the same neural sources. Although there is no quanti-
tative measure of this component, our results assure us that it
does not dominate the correlation patterns seen. Specifically, the
rapid fall of the magnetic field strength with distance, along with
the effect of gradiometer coils, would result in a very tight
pattern of correlations of signal due to this contribution, with no
distant interactions visible on the same scale. Instead, what we
see from our analysis are complex patterns of interactions over
the entire cortex, visible on a single amplitude scale. It is true
that the correlations shown are stronger for near sensors, but
neural activity is generally more correlated locally. Finally, the

calculation of partial correlations would further eliminate po-
tentially spurious effects.

In previous studies, associations between neuronal ensembles
(recorded as EEG, MEG, or local field potentials) have been
investigated most often by using frequency-domain (see, e.g.,
refs. 7–11) or time-domain (see ref. 12 for a review) analyses
applied to a whole data set or within specific spectral frequency
bands. In such analyses, association measures are commonly
calculated from the data without testing for their stationarity
(see ref. 10 for an exception). Stationarity (or quasistationarity)
is a prerequisite for obtaining accurate measurements of mo-
ment-to-moment interactions between time series (as contrasted
to shared trends and�or cycles), both in the time domain (by
computing cross-correlation) and in the frequency domain (by
computing squared coherency) (1–3). Cross-correlation or co-
herency estimates based on raw nonstationary data yield erro-
neous estimates and spurious associations.

It should be noted that the sign of cross-correlation does not
provide information regarding underlying excitatory or inhibi-
tory synaptic mechanisms but merely indicates the kind of
simultaneous covariation with respect to the mean of the series:
a positive correlation indicates covariation in the same direction
(increase�increase, decrease�decrease), whereas a negative cor-
relation indicates covariation in opposite directions (increase�
decrease, decrease�increase). In general, PCCij

0 tended to vary in
an orderly fashion in sensor space, such that it tended to be

Fig. 5. Massively interconnected network for an individual subject. Conven-
tions are as in Figs. 3 and 4.

Fig. 6. Massively interconnected network for a different subject. Conven-
tions are as in Figs. 3 and 4.
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positive between neighboring sensors and negative between
sensors farther away. Although this tendency was a significant
underlying overall relation, there were clear and distinct excep-
tions, including negative PCCij

0 between neighboring sensors and
positive PCCij

0 between far-away sensors. In addition, the spatial
PCCij

0 pattern differed depending on the location of the refer-
ence sensor. Altogether, these findings suggest a robust and
relationally orderly correlation structure, but with distinct local
specificity. Indeed, these characteristics are the fundamental
attributes that endow the resulting massively interconnected
network with the characteristic structure illustrated in Figs. 3–6.
A cardinal feature of this structure was the partitioning of the
overall network into regional variations in the strength of

positive or negative interactions. The delineation of these mixed
interactions would be the next step in this approach, together
with an attempt to localize the interactions in brain space by
using, e.g., current-density or beam-forming techniques (13–15).
These efforts are worthwhile given the remarkable robustness of
the network configuration across subjects. This robustness points
to a relatively stable synchronous interaction pattern among
neural populations, which can, in turn, serve as a canonical
network for assessing dynamic brain function.
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