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aBstract

A fundamental goal of systems neuroscience is to understand how 
the collective dynamics of neurons encode sensory information and 
guide behavior. To answer this important question one needs to un-
cover the network of underlying neuronal interactions. Whereas 
advances in technology during the last several decades made it pos-
sible to record neural activity simultaneously from a large number 
of network elements, these techniques do not provide information 
about the physical connectivity between the elements being re-
corded. Thus, neuroscientists are challenged to solve the inverse 
problem: inferring interactions between network elements from the 
recorded signals that arise from the network connectivity structure. 
Here, we review studies that address the problem of reconstructing 
network interactions from high-dimensional datasets generated by 
modern techniques, and focus on the emerging theoretical models 
capable of capturing the dominant network interactions of any or-
der. These models are beginning to shed light on the structure and 
complexity of neuronal interactions.
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INTRODUCTION

Progress made in the past several decades concerning the under-
standing of the central nervous system clearly indicates that higher 
brain functions such as perception, cognition, and motor control are 
performed by ensembles of synaptically interacting neurons acting 
in a concerted fashion as a network (Sporns 2010). Correspondingly, 
many neuropathological conditions resulting in various impair-
ments are ultimately caused by disruptions in network interactions, 
mostly due to pathological changes in synapses, neurons, or both 
(Palop et al. 2006).

Interactions between neurons span across multiple spatial 
scales ranging from the microscale of single neurons and synapses, 
to the mesoscale of functional columns and their projections, and 
to the macroscale of brain regions and pathways. During percep-
tion, cognition, or motor action, individual neurons exhibit com-
plex dynamic activities that result from these network interactions. 
Consequently, understanding how the collective dynamics of neu-
rons encode sensory information and guide behavior, which is a 
fundamental problem of systems neuroscience, requires the knowl-
edge of the network of underlying neuronal interactions.

While electrical properties of single neurons and synapses have 
been extensively studied, the progress in understanding the electro-
physiology at the network level has been much slower. Studies of 
brain network activity require simultaneous recordings from mul-
tiple spatially distributed sites covering a sufficiently large area to 
ensure that the electrical activity of a representative part of the un-
derlying neuronal network is recorded. In recent decades, more re-
searchers have begun to use, instead of a single microelectrode, an 
array of microelectrodes that allows simultaneous recordings from 
considerably larger neuronal ensembles (Nicolelis 2007), both at 
the level of individual neurons (single-unit spikes) and at the level 
of local populations of neurons (multi-unit spikes and local field po-
tentials [LFPs]). Since the 1950s, the number of network elements 
simultaneously recorded at higher spatial resolutions has nearly 
doubled every 7 years (Stevenson and Kording 2011). Regarding 
studies of neural activity at lower spatial resolutions, modern brain 
imaging techniques such as functional magnetic resonance imag-
ing (fMRI) and magnetoencephalography (MEG) allow simultane-
ous recordings from a large number of network elements as well. 
Thus, advances in technology are leading to an explosion in the 
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amount of neural data that are now being collected in experiments. 
Nevertheless, large volumes of such data alone do not guarantee 
progress in the understanding of brain network function. The point 
is that current techniques record only simultaneous activity of net-
work elements but in essence do not provide information about the 
physical connectivity between them. As a result, how to translate 
these multidimensional neural activity data into knowledge about 
neuronal interactions and network function is a highly nontrivial 
problem. Therefore, it is important for the field of systems neuro-
science to develop analytical approaches that are able to utilize the 
fundamentally new type of information about brain activity pro-
vided by simultaneous recordings from a large number of network 
elements both at higher and lower spatial resolutions.

There are two basic issues in this regard. First, most of the ana-
lytical tools developed earlier are suitable for dealing with one tiny 
part of the network represented by a few elements at a time and, 
as a result, they are ineffective in capturing the collective proper-
ties of several tens to a hundred continuously interacting elements 
that are being recorded in current neurophysiological experiments. 
To make use of such multidimensional data, approaches providing 
computationally tractable yet phenomenologically accurate models 
are necessary. Second, even though recordings from increasingly 
larger sub-networks of elements are becoming possible, these sub-
networks still represent only small parts of functional networks, 
which are composed of thousands to millions of elements. Thus, 
the computational models should provide adequate descriptions not 
only for smaller sub-networks being recorded but also when these 
models are extrapolated to significantly larger network sizes.

UNDERSTANDING NEURONAL 
INTERACTIONS FROM PAIRWISE 

ACTIVITY CORRELATIONS

A broad definition of neuronal interactions reflects a simple and in-
tuitive idea that activity of one cell can affect the activity of another 
cell, or, in other words, the firing of neurons is not statistically inde-
pendent. Such a definition, also referred to as functional connectiv-
ity, implies that interactions between a pair of neurons can be due to 
direct monosynaptic or indirect polysynaptic physical connections. 
For many decades, correlation between the time series of activity 
of neurons (Perkel et al. 1967; Gerstein and Perkel 1969) has been 
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used as a basic measure for the quantification of the strength of 
interaction. For example, correlation analysis was used to infer in-
teractions between local neurons in auditory (Dickson and Gerstein 
1974) and visual (Ts’o et al. 1986) cortices, or between the visual 
cortex and the thalamus (Sillito et al. 1994; Reid and Alonso 1995).

Although studies based on pairwise correlations provide impor-
tant insights into cortical signal processing, the interpretation of raw 
correlation values as a measure of intra-network interaction can be 
problematic. Indeed, correlations between neurons can be caused 
not only by internal interactions but also by external factors acting 
upon them. For instance, common inputs can lead to trial-to-trial co-
variation in response latency and/or excitability. In such cases, the 
recipient neurons, even in the absence of direct or indirect network 
interactions between them, will exhibit activity correlations simi-
lar to those of interacting neurons (Brody 1999). Co-variation be-
tween activities of neurons can also be caused, for example, by slow 
changes of state of the underlying system resulting in co-varying 
drifts (i.e., non-stationarities) in neural activity. From the point of 
view of network interactions, these externally induced correlations, 
irrespective of their sources, should be treated as spurious, and it is 
highly desirable to remove their effects from the correlations that 
arise from intra-network interactions. A few methods (e.g., Gerstein 
and Perkel 1969; Brody 1999) that rely on time series correlations 
obtained under different stimulus conditions allow, with limited ac-
curacy, to differentiate between correlations arising from external 
co-variates and correlations due to internal interactions.

A similar problem as to how two time series relate to each oth-
er arises also in econometrics, for example, when considering the 
usefulness of one economic series in forecasting of another series. 
Interestingly, in this field too, it was recognized that naive interpre-
tation of raw correlations between series as a measure of their re-
latedness can result in serious errors, for example, false forecasting 
(Box and Newbold 1971; Granger and Newbold 1974). The point 
is that economic time series are usually non-stationary, a phenom-
enon that is, in general, also inherent in time series of neural activ-
ity. As mentioned above, non-stationarities may result in spurious 
correlations. The other crucial point is that many economic time 
series studies collected data over relatively short time spans (an or-
der of 100 samples). Thus, even assuming that the raw time series 
had been stationary, correlations should be estimated from experi-
mental samples of limited length. However, finite sample lengths 
could highly inflate or deflate the estimated correlation values when 
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the series themselves are auto-correlated (Jenkins and Watts 1968; 
Box and Newbold 1971; Haugh 1976). In fact, because the correla-
tion estimation errors are affected by the magnitude of autocorrela-
tions of individual series, in some special cases even fairly long 
sequences of samples of entirely unrelated time series may exhibit 
large correlations, all of them spurious (see an illustrative example 
in Jenkins and Watts 1968, pp 338-339). This crucial point is also 
relevant to the analysis of time series of neural activity and, if un-
acknowledged, may result in misleading conclusions. For example, 
one may erroneously assign significance to correlation estimates 
that have apparently high values, but which in fact occur entirely 
spuriously, simply due to the limited sampling of the underlying 
series and the presence of an autocorrelation structure.

The problems arising from non-stationarity, the finite sample 
length and presence of an autocorrelation structure in experimen-
tally obtained data can be properly treated by using, for example, 
the methods of time series analysis pioneered by Box and Jenkins 
(1970). The key idea is to model individual series as a stochastic 
process driven by a white noise. The relation between the observed 
series is then essentially determined by correlations between the 
corresponding white noise series. Importantly, these correlations 
can now be reliably estimated, even from relatively short samples, 
because the white noise series do not have an autocorrelation struc-
ture. Such an approach, which is suitable for continuous neural sig-
nals sampled at equal time intervals, has been adopted in a number 
of recent studies of functional connectivity at large spatial scales 
based on MEG (Georgopoulos et al. 2007), fMRI (Christova et al. 
2011), and LFP (Christopoulos et al. 2012) signals. In this frame-
work, the model parameters are optimized to capture the temporal 
structure of the observed series. Then, the residuals (estimates of 
noise) that generate the observed series from the fitted model are 
calculated. If the model is adequate, the residuals should be close 
to a white noise. The key feature of this approach is that it allows 
spurious correlations caused by homogeneous non-stationarities 
and/or autocorrelations to be explained away as effects of the fitted 
stochastic processes, so that interactions between the observed time 
series are attributed solely to correlations between the white noise 
series (residuals) driving these processes.

Suppose now that a neuronal network is not affected by external 
factors and that samples of neural activity are stationary and suffi-
ciently long, so that raw correlations between pairs of such samples 
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can be accurately estimated. Since the factors mentioned above that 
can potentially cause spurious correlations are no longer present, it 
is tempting to assume that in this well-behaved case raw correlation 
values are appropriate measures of intra-network interactions and 
there is no need to model individual series to quantify these interac-
tions. Indeed, in this case, if two neural signals A and B are indepen-
dent, then raw correlation, ρAB , between the sequences of activity 
samples will be close to zero as correlation between the respective 
white noise series, ωAB , derived from the stochastic models of A and 
B: ρAB = ωAB = 0. However, what if there is an interaction (via direct 
or indirect network connections) between A and B? In this case, 
both ρAB and ωAB will be different from zero, but not equal to each 
other. Which of these two measures provides a better description 
of network interactions? One may argue that a good measure of in-
teraction should be independent of internal autonomous properties 
of interacting units. The point is that, in this case, the magnitude of 
interaction between one pair of units in the network can be directly 
compared with the magnitude of interaction between another pair. 
In this regard, it should be noted that raw correlation ρAB  between 
series A and B, in general, depends on the autocorrelations of indi-
vidual series ρAA and ρBB  that, respectively, quantify internal prop-
erties of A and B (captured by the corresponding models). This is 
different from correlation ωAB between the white noise series gener-
ating activities of A and B because any white noise series, by defini-
tion, does not have an autocorrelation structure. Therefore, raw cor-
relation, ρAB , unlike the corresponding white noise correlation ωAB , 
is not a good measure of interaction. To further illustrate this point, 
consider a second interacting pair of neural signals C and D that is 
characterized by raw correlation ρCD and the corresponding white 
noise correlation ωCD. In the context of network interactions, if cor-
relation between the white noise series generating activities A and B 
is the same as correlation between the white noise series generating 
activities C and D, i.e., ωAB = ωCD , then it would be reasonable to 
equate the strength of interaction between A and B with the strength 
of interaction between C and D. Note that raw correlations ρAB  and 
ρCD , which are contaminated by the internal autonomous properties 
of the interacting units, will not be equal in this case.

In conclusion, regardless of whether raw correlations can be 
reliably estimated from experimental samples, they are not appro-
priate for the quantification of intra-network interactions. Such in-
teractions, however, can be meaningfully quantified by correlations 
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between the generating series that drive stochastic models fitted 
into experimental samples. It should be noted that the neuroscience 
community, at large, remains mostly ignorant about the pitfalls of 
using raw correlations as a measure of functional connectivity in 
brain networks.

NETWORK MODEL BASED APPROACH

The pairwise approach to intra-network connectivity has limita-
tions that become evident in networks with three or more neurons. 
For example, if neuron A is connected to neuron B and neuron B is 
connected to neuron C, then activities of all three neurons will be 
considerably correlated. However, relying on the pairwise consid-
eration alone it would be impossible to know that the interaction 
between A and C is, in fact, facilitated by B. As a result, we would 
be unable to separate the direct interaction between A and C from 
the contributions made by the interactions between A and B, and B 
and C, an important piece of information. This and similar prob-
lems arise because the pairwise approach, by considering only two 
neurons at a time, intends to account for just one network interac-
tion (among the vast number of other interactions) that is consistent 
with the activities of the observed pair of neurons (thus ignoring 
the activities of unobserved neurons). Such a simplified approach 
provides considerably limited and inaccurate information about net-
work structure and organization.

 Since modern techniques allow simultaneous recordings from 
significantly larger populations of neurons, recently the theoretical 
framework has been extended beyond the pairwise consideration 
to provide a more accurate reconstruction of intra-network interac-
tions. In general, a better approximation of functional connectivity 
can be achieved by constructing a network model that concurrently 
considers interactions between every pair of simultaneously record-
ed neurons. Such an approach allows, in principle, correlations be-
tween indirectly connected neurons (A and C in the example above) 
to be explained away by a chain of direct interactions (connections 
from A to B and from B to C) involving other neurons (B).

For describing neural spiking activity in network-based models, 
a number of studies used a point process framework (Chornoboy 
et al. 1988; Brillinger et al. 1988) in which model parameters are 
optimized by applying the maximum likelihood principle to render 
the observed multi-neuron spikes as the most likely outcome of the 
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model. In contrast to the pairwise approach, in this consideration the 
spiking probability of one neuron is determined by the concurrent 
interactions with all other recorded neurons, not just one of them. 
Additionally, it allows inclusion of several other factors that can 
simultaneously affect the neuron’s firing probability, for example, a 
recent (< 100 ms) spiking history of the observed neuronal popula-
tion and external co-variates associated with sensory stimuli and 
behavior (Okatan et al. 2005; Truccolo et al. 2005, 2010). While 
the point process network likelihood approach focuses on the spa-
tiotemporal collective dynamics and has provided valuable models 
for revealing such dynamics in ensembles of hippocampal (Okatan 
et al. 2005) and motor cortical neurons (Truccolo et al. 2005), it is 
not intended to provide minimal models for dynamics description 
(Truccolo et al. 2010). Therefore, as the system’s dimension (i.e., 
the size of observed neuronal population) increases, the number of 
model parameters soon outgrows the number of feasibly collect-
ible experimental samples. Consequently, methods based on this 
approach often over-fit the data and an accurate estimation of these 
parameters becomes impossible, a computational challenge known 
as the curse of dimensionality. Recently, it has been shown that a 
Bayesian inference that combines the likelihood of experimental-
ly observed multi-neuron spikes with the assumptions about prior 
probabilities of the underlying parameters can reduce over-fitting 
and improve inference of these parameters (Stevenson et al. 2009). 
However, this approach also does not directly address the problem 
of minimal models of network interactions that satisfy all correla-
tions simultaneously, which is an important and principal question 
on its own.

HOW CAN WE CIRCUMVENT  
THE CURSE OF DIMENSIONALITY?

The main difficulty in deriving a computationally parsimonious 
mathematical description for large neuronal ensembles lies in de-
termining a sufficiently accurate probability distribution over the 
space of multi-neuron spike firing patterns. This could potentially 
be achieved if it would be possible to effectively reduce the dimen-
sionality of the dataset while retaining the relevant dimensions. The 
general approach used in this field is formulated as follows: The 
spike trains recorded from N neurons are divided into small time 
bins ∆t, so that the activity of neuron i could be represented by a 
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binary variable σi(t) that can take on only two values, +1 if one or 
more spikes are present in the time bin t, and -1 otherwise. The state 
σN(t) of the network at a given time bin t can then be described as 
σN(t) = {σ1(t), σ2(t), ... σN(t)}. Thus, there are 2N states, each state 
corresponding to one of the possible N-neuron spike firing patterns. 
In general, this system can be described by 2N -1 parameters provid-
ing the probabilities of occurrence of each pattern. A large volume 
of the space of network states, however, makes it impractical to 
construct the exact probability distribution from experimental data 
because the number of required measurements grows exponentially, 
as 2N, with neuronal population size N. However, it could be pos-
sible to build an approximate distribution P(σN) by using a low-di-
mensional parameterization. The parameters should be determined 
from the experimental data, but the required number of measure-
ments will now scale with the number of parameters (power law of 
N) rather than with the volume of the network states (exponential 
law of N).

THE MAXIMUM ENTROPY PAIRWISE 
MODEL

One may think that low-dimensional parametric models, although 
computationally tractable, are so inaccurate that they would be of 
little practical interest. Nevertheless, recent studies (Schneidman et 
al. 2006; Shlens et al. 2006, 2009; Tang et al. 2008; Yu et al. 2008; 
Cocco et al. 2009) suggest that surprisingly accurate statistical de-
scriptions can be achieved in the framework of parametric models 
known as maximum entropy binary pairwise models. The binary 
pairwise models find probability distributions P(σN) that are consis-
tent with the mean firing rates ( )tiv of neurons and all pairwise 
correlations ( ) ( )t ti jv v . However, for each given set of means 
and correlations there is an infinite number of such models. Among 
them, the maximum entropy model is the one that has the least struc-
tured probability distribution (hence the maximum entropy). The 
least structured implies that the distribution assumes no higher-
order (than second, i.e., pairwise) interactions. Importantly, these 
are in essence spatial interactions because they are determined by 
the instantaneous states of the neurons (i.e. in the same time bin t).

 Maximum entropy models originate from information the-
ory as a parsimonious method for setting up probability distribu-
tions (Cover and Thomas 1991). As it was elucidated by Jaynes 
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(1957), in general, there is a natural connection between informa-
tion theory (Shannon 1948) and statistical mechanics. Particularly, 
second-order maximum entropy models are analogous to the Ising 
models introduced in statistical physics for the description of prop-
erties of magnetic materials (Landau and Lifshitz 1980). To com-
pute the probability distribution of patterns provided by the maxi-
mum entropy pairwise model, Schneidman et al. (2006) and Tang 
et al. (2008) explicitly mapped neuron firing rates and pairwise cor-
relations onto magnetizations and spin-spin correlations in the Ising 
model. Specifically, the energy (σN ) of an ensemble of N neurons in 
state σN  is given by:

( )E
1

j
1

i i
i N

i j i
i j N≤ ≤≤ ≤

v a v b v v=- -
1

M / /

Here αi and βij are the model parameters: αi characterizes the in-
trinsic property of neuron i to fire spikes, whereas βij describes the 
pairwise interaction between neurons i and j. These parameters are 
analogous to the local magnetic fields and spin-spin couplings, re-
spectively, in the Ising model. The second-order maximum entropy 
distribution then takes the form:

( ) [ ( )]/exp EME
(2) v vQ F= -M M

where { }v MM
[ ( )]exp E vF -=/  is a normalization factor (parti-

tion function). In this framework, the mean firing rates and pair-
wise correlations are computed as corresponding averages iv  
and i jv v  over the distribution ( )ME

(2) vQ M . Note, the mean firing 
rates iv  and the pairwise correlations i jv v  are experimentally 
observable quantities, and they are different and should be distin-
guished from the intrinsic firing properties αi and the pairwise inter-
actions βij , which are the model parameters.

In physics, one usually starts from the known parameters of the 
probability distribution (external fields and pairwise couplings) and 
then computes average values of observables (magnetizations and 
spin-spin correlations). However, in neuroscience, with the applica-
tion of the Ising model to neuron-neuron interactions, one should 
solve the inverse problem, starting from the known observables, 
neuron firing rates and pairwise correlations, and then compute the 
model parameters, the intrinsic firing properties {αi } and the pair-
wise interactions {βij}. There are several computationally efficient 
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methods for solving the inverse Ising problem (see, e.g., Cocco et 
al. 2009; Ganmor et al. 2011a).

The parameters of the maximum entropy model are fully de-
fined by the set of N mean firing rates and the N(N - 1)/2 pairwise 
correlations, which could be obtained experimentally. As a result, 
the number of measurements required to determine the full prob-
ability distribution ( )ME

(2) vQ M  scales quadratically with the number 
of neurons N (i.e., power law N 2), not exponentially (2N).

HOW GOOD IS THE PAIRWISE MODEL?

The maximum entropy binary pairwise approach was applied to 
the probability distributions of multi-neuron spike firing patterns 
for the first time in studies of salamander and guinea pig retinas 
(Schneidman et al. 2006) and primate retina (Shlens et al. 2006). 
Retinal ganglion cells were stimulated either by natural movies 
(Schneidman et al. 2006), or by steady spatially uniform illumina-
tion, or white noise (Shlens et al. 2006). The performance of the 
pairwise model was evaluated in these studies by comparing the 
probability distribution of spike firing patterns predicted by the 
model, ( )ME

(2) vQ M , with the distribution of patterns observed experi-
mentally, ( )true NvQ . The discrepancy between the two distributions 
could be measured as the entropy difference S SME

(2)
true- , where the 

entropy S  of a distribution Q(x) is ( )logx xS P2Q=- {x}
^ h/ . 

To appreciate the scale of discrepancy, one also needs to introduce 
a meaningful unit of measurement; these studies used the entropy 
difference, S SME

(1)
true- . Here, SME(1)  is the entropy of the indepen-

dent model that is simply a first-order maximum entropy model in 
which all interactions are set to zero: 0i jb = . It produces a prob-
ability distribution ( )ME

(1) vQ M  that has the same mean rates iv  as 
observed in the data but assumes that the firing of each neuron is 
independent from the others. The model performance, thus, could 
be measured by the ratio ( )/( )S S S SME

(2)
true ME

(1)
trueND = - - . If it is 

small ( 1N %D ), then the pairwise model approximates the true dis-
tribution very well. In contrast, if ND  is close to 1, then it provides 
no improvement over the independent model. Schneidman et al. 
(2006) demonstrates that for an ensemble N = 10 cells, the pair-
wise model is approximately 10 times more efficient in capturing 
the statistics of multi-neuron spike patterns than the independent 
model ( .0 110 ,D ). For the preparations studied by Shlens et al. 
(2006), the pairwise model shows almost a 100-fold improvement 
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over the independent model for N = 7 ( . )0 017 ,D . Results of these 
first two studies were further confirmed for multi-neuron spike pat-
terns observed during spontaneous activity of cortical neurons in 
slices and organotypic cultures (Tang et al. 2008), dissociated cul-
tures (Schneidman et al. 2006; Tang et al. 2008), as well as during 
stimulus-driven activity of neurons in the visual cortex of anesthe-
tized cats (Yu et al. 2008) and monkeys (Ohiorhenuan et al. 2010).

These studies generated a lot of excitement because they all sug-
gest that the maximum entropy pairwise model could be amazingly 
effective. It appears that, regardless of the preparations studied, the 
second-order spatial interactions are sufficient for a fairly accurate 
description of the statistics of multi-neuron spike firing patterns 
and, as a result, the contributions from all higher-order interactions 
could be simply neglected. Such a dramatic simplification would 
make this apparently intractable, exponentially large problem rather 
tractable with a quadratically small number of required measure-
ments for the system description. However, there are at least two 
problems that need to be addressed to understand the limits of the 
maximum entropy pairwise approach. The first problem concerns 
the extrapolation of the model to large N. The second problem con-
cerns the temporal correlations between the multi-neuron spike-fir-
ing patterns ( )tNv  observed in successive time bins t.

THE EXTRAPOLATION PROBLEM

The fact that the pairwise model provides a good description of the 
statistics of multi-neuron spike firing patterns is fascinating and im-
portant, not only because it radically simplifies the system but also 
because it could have deep-rooted implications for the understand-
ing of network structure and function. For example, Schneidman et 
al. (2006) suggests that the pairwise spatial interactions in the retina 
create a mechanism for an error-correcting code. To arrive at this 
conclusion, though, the authors, using the maximum entropy pair-
wise model, have to extrapolate the quantities computed for smaller 
sub-networks to the whole network. However, as it was pointed out 
by Nirenberg and Victor (2007), the form of the extrapolation to 
large chosen by Schneidman et al. (2006) is somewhat arbitrary, 
and other extrapolations would have led to different conclusions.

The initial experimental support for the pairwise model was 
provided by small sub-networks; in most of the studies mentioned 
above the population size was on the order of 10 neurons. An im-
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portant question is whether the conclusions reached from studies 
of smaller sub-networks will generalize to the full functional net-
works. Specifically, given that the maximum entropy distribution 
( )ME

(2)
nvQ for a subset of n neurons predicts the statistics of patterns 

{ nv }, will the distribution ( )ME
(2) vQ M  produced now for the full set 

of N n&  neurons also predict the statistics of the entire network 
patterns { Nv }? The answer to this question is not trivial. In terms 
of ND , which quantifies the quality of fit of the maximum entropy 
pairwise model to the true distribution observed in the data, the ex-
trapolation problem is the problem of computing ND  in the limit of 
large N.

 Recent theoretical work by Roudi et al. (2009) showed that 
for an arbitrary true distribution ( )true NvQ  the quality of fit ND can 
be computed in the perturbative regime defined by a small param-
eter Nv tD- , where v-  is the average firing rate across the population. 
The authors computed ND using perturbative expansion in powers 
of Nv tD-  in the limit Nv t 1%D- . The final result is quite simple: 

( )N v t2N . cD D- - , where cis a constant independent of N. The 
authors made two important conclusions. First, in the perturbative 
regime ND  is always small. Therefore, in this regime the pairwise 
model, irrespective of the properties of the true distribution, will 
fit the data well. Second, to understand whether the model will be 
adequate for large systems (i.e., if ND  will remain small as N in-
creases further) one needs to consider values of /N v t1& D-  when 
the perturbative regime breaks down.

These quite general theoretical results have important implica-
tions for the interpretation of experimental data. As it was pointed 
out by Roudi et al. (2009), experiments conducted in earlier studies 
(Schneidman et al. 2006; Shlens et al. 2006; Tang et al. 2008; Yu et 
al. 2008) operated close to the perturbative regime; the parameter 
Nv tD-  in these studies was no greater than 0.4. Thus, the reason that 
the pairwise model explained the experimental data quite well in all 
of these studies is somewhat trivial; no matter what the structures 
of the underlying true distributions were, this would have happened 
anyway. Correspondingly, to answer the question of whether the 
pairwise model can be extrapolated to larger N, one needs to ex-
perimentally measure how ND  depends on N past the perturbative 
regime. If ND  saturates and remains small, then it would be reason-
able to assume that the pairwise model could be extrapolated to the 
large N regime.
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FAILURE OF THE PAIRWISE MODEL 
AND EMERGENCE OF HIGHER-ORDER 

INTERACTIONS

Recently, Ganmor et al. (2011b) clearly demonstrated that for larg-
er networks that are beyond the perturbative regime the pairwise 
model becomes inaccurate and fails to capture network behavior. 
Specifically, they studied populations of salamander retinal neurons 
( N 100, ) responding to natural stimuli. The pairwise model sig-
nificantly misestimated the probability of occurrence of the most 
common multi-neuron patterns, although it predicted fairly well the 
rare patterns. This suggests that the problem cannot be simply at-
tributed to the poor experimental sampling of population activity 
patterns; rather, it is caused by a failure of the model itself. This, in 
turn, indicates that the contributions from higher than second-order 
interactions in larger networks become significant and that they 
cannot be neglected anymore if one needs to achieve an accurate 
description of network behavior.

The second-order maximum entropy model can be naturally 
extended to account for higher-order interactions (Amari 2001) by 
adding corresponding terms in the expression for the energy of the 
neuronal ensemble. For example, the third-order maximum entropy 
model will result in

( )E
1

j
1 1

i i
i N

i j i
i j N

i jk i j k
i j k N≤ ≤ ≤≤ ≤ ≤

v a v b v v c v v v=- - -
1 1 1

M / / /

where { i jkc }is a set of parameters representing the third-order in-
teractions and which must be found by matching the correspond-
ing third-order activity correlations, i.e., averages i j kv v v  over 
( )ME

(3)
NvQ , to the experimental ones. Higher than second-order in-

teractions quantify the tendency of groups of neurons forming trip-
lets, quadruplets, etc., to fire synchronously beyond what can be 
explained by the pairwise model of the network.

If the true distribution ( )true NvQ  over all the network states 
was known, then it would have been straightforward to infer all (i.e., 
up to the N-th order) network interactions (Amari 2001). However, 
because the number of activity patterns grows exponentially with 
the system size N, experimental estimation of ( )true NvQ  for larger 
networks becomes practically impossible no matter how long one 
observes the system. Therefore, using only frequently occurring 
patterns Ganmor et al. (2011b) constructed a model that approxi-
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mates the distribution ( )true NvQ . The model learned the functional 
connectivity in the underlying network by allowing the inclusion 
of interactions of any order, if necessary. They found that this mod-
el provides significantly better description of the response of the 
retinal ganglion cells to different natural movies than the pairwise 
( )ME

(2)
NvQ  model. These results do not contradict those reported in 

Shlens et al. (2009) who studied similar sized ( N 100, ) networks 
of ganglion cells in primate retina but concluded that second-order 
models, in fact, are very successful in capturing the network re-
sponses. In this latter case the network was stimulated by spatio-
temporal white noise, which, by definition, lacks any correlation 
structure, unlike naturally occurring scenes that are known to con-
tain long-range correlations. Importantly, Ganmor et al. (2011b) 
demonstrates that as the stimulus becomes more correlated the net-
work response becomes more correlated too, resulting in a growing 
contribution of higher-order interactions. They conclude, therefore, 
that the higher-order interactions are driven by the higher-order sta-
tistics in natural scenes. Importantly, the number of interaction pa-
rameters contributing to the model is much smaller than the number 
of all possible pairs, and these parameters correspond to low-order 
interactions, typically not exceeding the fifth-order.

Other recent studies (Montani et al. 2009; Ohiorhenuan et al. 
2010; Santos et al. 2010) demonstrate that even in smaller net-
works, in which the pairwise models already capture much of the 
network behavior, the inclusion of higher-order interactions, in gen-
eral, improves the statistical description of multi-neuron firing pat-
terns. For example, significant third-order interactions were identi-
fied in a population (N = 38) of neighboring (< 300 μm) neurons in 
the macaque visual cortex (Ohiorhenuan et al. 2010), and up to the 
fourth-order interactions were present among neurons (N = 24) in 
the rat somatosensory cortex (Montani et al. 2009).

Finally, the contribution of third-order interactions to cortical 
dynamics such as ongoing neuronal avalanches (Beggs and Plenz 
2003) is demonstrated by Yu et al. (2011) using the dichotomized 
Gaussian (DG) model (Amari et al. 2003, Macke et al. 2009, 2011). 
Particularly, it is shown that pairwise interactions alone fail to prop-
erly account for neuronal avalanche dynamics that characterize on-
going cortical activity in awake monkeys based on the LFP signal. 
However, the inclusion of a specific structure of higher-order in-
teractions by means of the DG model improves the accuracy of the 
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reconstructed neuronal avalanche statistics by up to two orders of 
magnitude.

THE TEMPORAL CORRELATIONS 
PROBLEM

The maximum entropy pairwise model accounts for spatial interac-
tions and predicts spike patterns for one time-bin only, assuming 
temporal independence of successive patterns. On the other hand, 
it has been shown that patterns of activity in populations of neu-
rons are temporally correlated (Lindsey et al. 1997; Prut et al. 1998; 
Tsodyks et al. 1999; Ikegaya et al. 2004; Eytan and Marom 2006). 
Therefore, the validity of the temporal independence assumption 
depends on the duration of the time bin tD ; if it is small compared 
to the characteristic correlation time in the spike trains, then this 
assumption breaks. Consequently, even if the pairwise model suc-
cessfully predicts the statistics of spatial patterns, this does not nec-
essarily mean that it will also predict the temporal sequence of the 
patterns. Indeed, Tang et al. (2008) demonstrates that spike patterns 
predicted from the pairwise model that were concatenated in a tem-
porally independent fashion failed to produce sequences of patterns 
that were observed experimentally, although the model provided a 
good fit to the observed statistics of the patterns in one time bin. 
The studies that examined the effectiveness of the pairwise model 
typically used tD  = 20ms. While this time bin could be acceptable 
in some cases, such as experiments that use non-natural stimuli with 
short correlation times (e.g., white noise in Shlens et al. 2006), it 
could be too short for other experimental paradigms in which tem-
poral correlations in neural activity are observed on the scale of 
hundreds of milliseconds, as was the case of the spontaneous activ-
ity studied by Tang et al. (2008).

Recently, Marre et al. (2009) proposed a new approach that 
combines the maximum entropy binary pairwise model with a 
Markovian assumption to derive the joint probability distribution of 
spike patterns observed in two consecutive time bins. This approach 
essentially extended the maximum entropy pairwise model into the 
temporal domain by applying the framework of stationary Markov 
chains. Using this model one can compute the conditional probabil-
ity distribution ( )2 1v vQ M M , which is the probability of transition 
from the spike pattern 1vM  in one time bin to the pattern 2vM  in the 
next time bin. These transition probabilities together with the sta-
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tionary probabilities ( )vQ  define the probability of observing any 
given sequence of T patterns ,1 2 Tfv v vM M M . The Markov model is 
consistent not only with the mean firing rates of neurons ( )tiv  
and the instant correlations ( ) ( )t ti jv v  as in the pairwise mod-
el, but also with the time-lagged correlations ( ) ( )t t ti jv v D+ . 
Consequently, this is the maximum entropy second-order model that 
accounts for distributed spiking activity based on both spatial and 
temporal interactions. The model parameters are fully defined by 
the set of N mean firing rates, the N(N - 1)/2 spatial, and N(N + 1)/2 
temporal pairwise correlations, which could all be obtained ex-
perimentally. To solve the model numerically, Marre et al. (2009) 
proposed an elegant approach that in essence reduces the N–neu-
ron Markov problem to solving the 2N–neuron maximum entropy 
pairwise problem. Consequently, to determine the parameters of the 
Markov model from experimental data one needs to solve the in-
verse Ising problem.

Marre et al. (2009) tested this model on one small population of 
neurons (N = 8) recorded from the parietal cortex during sleep states 
and on synthetic data generated by the Glauber spin-glass dynam-
ics. It remains unclear whether this approach can succeed if tested 
against larger networks.

The problem of temporal correlations is highly significant for 
several reasons. First, recent theoretical work (Roudi et al. 2009) 
showed that the pairwise model error due to ignoring temporal cor-
relations is, in fact, larger than the error due to ignoring spatial cor-
relations. Thus, to construct an accurate spatiotemporal probability 
distribution both spike firing patterns and their temporal evolution 
should be taken into account. Second, maximum entropy pairwise 
models that do not assume temporal independence are important 
not only because they improve the accuracy of the system descrip-
tion but they also could have deep-rooted implications for the un-
derstanding of network structure and function. For example, if the 
extended model proposed by Marre et al. (2009) turns out to be 
sufficiently accurate, then it suggests that temporal interactions in 
cortical networks are constrained by the Markov property, i.e., the 
probability distribution for the spike patterns at the next time bin 
only depends on the current network state (spike pattern). Also, this 
model has an additional set of parameters describing the transition 
probability from one state of the network at time bin t to another 
state at time bin t + 1. These parameters, which should be deter-
mined from the time-lagged pairwise correlations, are likely related 
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to the underlying synaptic structure and could, therefore, provide 
significant insights into the network architecture and functional 
connectivity from experimentally measured quantities.

CONCLUDING REMARKS

The structure of neuronal interactions ultimately defines the nature 
of the neural code, i.e., how activity patterns in networks of neu-
rons encode sensory information and guide behavior. Because the 
number of all potential interactions (i.e., interactions of all orders) 
grows exponentially with the size of the network, the neuronal in-
teraction structure, in general, could be arbitrarily complex. That 
is why the initial success of maximum entropy pairwise models in 
describing the strongly correlated activity in small groups of neu-
rons ( N 10# ) generated a lot of excitement; it appeared that first 
and second-order interactions alone provided a fairly accurate de-
scription of network behavior. This implied that contributions from 
all higher-order interactions are relatively small and, therefore, they 
can be effectively neglected, resulting in a dramatic simplification 
of the underlying system. More recent studies of larger networks 
( N 202 ) demonstrate, however, that pairwise models account 
for much but not all of the network behavior. What is encouraging, 
though, is that even in the largest networks studied so far ( N 100,  
retinal neurons) the number of interaction parameters in the models 
approximating the statistics of network activity patterns is much 
smaller than the number of parameters in the maximum entropy 
pairwise models, and these parameters correspond to low-order 
interactions, typically not exceeding the fifth-order (Ganmor et al. 
2011b). Thus, even though in larger networks the pairwise models 
become inaccurate and fail to capture network behavior, the under-
lying structure of neuronal interactions remains relatively simple 
because interactions are sparse (i.e., few) and do not go to very high 
orders.

 An important question that has yet to be answered is the 
relationship between the interactions inferred by network models 
(functional connections) and actual physical interactions (synaptic 
connections). Are these functional connections reflecting the physi-
cal properties of the underlying networks or are they simply chime-
ras of the model? Note that in neural systems the physical interac-
tions are always pairwise. Also, in the network model considered 
by Ganmor et al. (2011b), the higher than second-order interactions 
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arise because of correlations present in natural scene stimuli. While 
this model accounts for spatial correlations it disregards the pres-
ence of temporal correlations. However, recently it has been shown 
(Roudi et al. 2009) that the error due to ignoring temporal correla-
tions is, in fact, larger than the error due to ignoring spatial correla-
tions. It will be interesting to find out how accounting for temporal 
correlations in multi-neuron activity patterns affects higher-order 
interactions.

Although these and many other questions need to be answered, 
network model based studies have laid down important ground-
work, suggesting that the situation may not be as hopeless as one 
may think. Ideas and approaches developed in these studies certain-
ly promise to be useful and have the potential to provide significant 
insights into the architecture and function of brain networks.
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