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a b s t r a c t

Intact cognitive functions rely on synchronous neural activity; conversely, alterations in synchrony are
thought to underlie psychopathology. We recently demonstrated that anomalies in synchronous neural
interactions (SNI) determined by magnetoencephalography represent a putative PTSD biomarker. Here
we develop and apply a regression-based diagnostic algorithm to further validate SNI as a PTSD
biomarker in 432 veterans (235 controls; 138 pure PTSD; 59 PTSD plus comorbid disorders). Correlation
coefficients served as proximities in multidimensional scaling (MDS) to obtain a two-dimensional
representation of the data. In addition, least absolute shrinkage and selection operator (LASSO)
regression was used to derive a diagnostic algorithm for PTSD. Performance of this algorithm was
assessed by the area under the receiver operating characteristic (ROC) curves, sensitivity, and specificity
in 1000 randomly divided testing and validation datasets and in independent samples. MDS revealed
that individuals with PTSD, regardless of comorbid psychiatric conditions, are highly distinct from
controls. Similarly, application of the LASSO regression-derived prediction model demonstrated
remarkable classification accuracy (AUCsZ0.93 for men, AUC¼0.82 for women). Neural functioning in
individuals with PTSD, regardless of comorbid psychiatric diagnoses, can be used as a diagnostic test to
determine patient disease status, further validating SNI as a PTSD biomarker.

Published by Elsevier Ireland Ltd.

1. Introduction

Posttraumatic stress disorder (PTSD) is a common and debili-
tating psychiatric disorder (Kessler et al., 2005). Within the last
decade there has been a surge of interest in identification of
biomarkers to facilitate diagnosis of PTSD. To that end, a number of
neuroendocrine, genetic, and structural or functional brain
abnormalities associated with PTSD have been identified (Lanius
et al., 2002; Yehuda et al., 2002; Karl et al., 2006; Pitman et al.,
2006; Geuze et al., 2008; Kovacic et al., 2008; Eckart et al., 2011;

Zolad and Diamond, 2013); however, identification of putative
biomarkers has largely been hampered by poor reliability and
validity (Yehuda et al., 2013; Zolad and Diamond, 2013).

Recently, it was demonstrated that veterans with posttraumatic
stress disorder (PTSD) can be reliably distinguished from commu-
nity controls with490% accuracy based on differences in neuro-
magnetic signals recorded with magnetoencephalography (MEG)
(Georgopoulos et al., 2010). Subsequent research using MEG
revealed a PTSD neural signature characterized by miscommuni-
cation of cortical circuitry primarily involving temporal and
parieto-occipital right hemispheric areas (Engdahl et al., 2010).
In particular, neural amomalies involving the right superior
temporal gyrus, a region associated with re-experiencing phenom-
ena (Penfield and Perot, 1963) have been observed (Engdahl et al.,
2010; James et al., 2013) in veterans with PTSD. These findings add
to the growing work highlighting the utility of MEG in identifying
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functional biomarkers of brain disease (Georgopoulos et al.,
2007), and provide compelling preliminary evidence of a PTSD
biomarker identified from anomalies in synchronous neural
interactions (SNI).

Synchronous neural activity is a ubiquitous phenomenon of
cortical networks that is central to numerous cognitive functions
including attention, memory, sensory integration, and sensory-
motor coordination (for review, see Singer (2004)). Though the
mechanisms underlying SNI are not fully understood, the putative
function is integration of activity across distributed brain areas
that operate in parallel. Notably, patterns of correlated network
activity are virtually identical across healthy subjects (Langheim
et al., 2006). In contrast, deviations in neural synchrony have been
linked to several neuropsychiatric disorders (Uhlhaas and Singer,
2006; Georgopoulos et al., 2007, 2010), presumably reflecting
dysfunctional cognitive processing. Indeed, impaired working
memory, attention, and perceptual organization have been tied
to alterations in neural synchrony in schizophrenia (Uhlhaas et al.,
2009). Regarding PTSD, the most prominent deviations in SNI are
hypothesized to underlie aberrant memory processing associated
with re-experiencing symptoms (Georgopoulos et al., 2010;
Engdahl et al., 2010; James et al., 2013).

We have previously demonstrated disease-specific deviations
in SNI (Georgopoulos et al., 2007) and have proposed that SNI
anomalies can be used as a diagnostic indicator (Georgopoulos et
al., 2010; Engdahl et al., 2010). In the present study we used least
absolute shrinkage and selection operator (LASSO) regression
(Tibshirani, 1996) to derive a diagnostic algorithm for PTSD based
on MEG SNIs. The diagnostic performance of this classification
algorithmwas measured by the area under the ROC curves in 1000
randomly divided testing and validation datasets. The perfor-
mance of the diagnostic algorithm was also evaluated in female
veterans and veterans with comorbid psychiatric disorders,
patient samples that were not used in generating diagnostic
algorithm.

2. Methods

2.1. Subjects

Four-hundred-thirty-two U.S. veterans (n¼235 controls; n¼138 PTSD without
co-morbidities, 74 of whom were included in Georgopoulos et al., 2010; 59 PTSD
with co-morbidities) participated in the study as paid volunteers. Study partici-
pants were recruited from October 2008 to November 2012. Inclusion criteria were
either a primary diagnosis of PTSD or, for the control group, no lifetime history of
subthreshold or greater PTSD symptoms and absence of any current clinically
significant mental health symptoms. Individuals were excluded from participating
if their medical chart indicated current suicidal ideation, recent psychiatric
hospitalization, history of psychotic disorder, presence of cardiac pacemakers or
other imbedded ferrous metal (due to magnetic effects on MEG), serious chronic
pain, or other central nervous system disorders (e.g. Parkinson's disease, dementia,
cerebral vascular accidents, etc.). Eligible veterans completed diagnostic interviews,
the Edinburgh Handedness Inventory (Oldfield, 1971), and underwent a MEG scan.
The study protocol was approved by the Institutional Review Board at the
Minneapolis VA Medical Center and subjects provided written informed consent

prior to the study. Provided in Table 1 are demographic and clinical characteristics
of the study participants.

2.2. Diagnostic measures

PTSD was assessed using the Clinician-Administered PTSD Scale for DSM-IV
(CAPS; n¼332) (Blake et al., 1995) or the Structured Clinical Interview for DSM-IV-
TR (SCID; n¼100) (First et al., 2002) PTSD module. The CAPS provides a continuous
measure of symptom severity; to categorize participants' PTSD status, severity of
each symptom was scored according to the SCID Symptom Calibration method,
which minimizes false positives and false negatives and is the preferred scoring
method for the CAPS when differential diagnosis is the goal (Weathers et al., 1999).
The SXCAL scoring rule provides empirically-derived cut-points for determining the
presence or absence of each of the 17 PTSD symptoms. To facilitate compatibility
with the SCID, CAPS symptom scores were converted to SCID-equivalent scores as
follows: a symptom score that met or exceeded the SXCAL cut-point was
considered full symptom endorsement (i.e., SCID score of 3); absence of the
symptom was considered a ‘no’ response (i.e., SCID score of 1); all other values
were considered subthreshold (i.e., SCID score of 2). Thus, the range of possible
values for the sum of the 17 PTSD symptoms was 17–51. Because reactions to
trauma are wide-ranging (Brewin et al., 2000; Breslau and Kessler, 2001; Adler
et al., 2008), emotional responses other than intense fear, helplessness, or horror
were accepted for Criterion A2 (e.g., anger, guilt, shame, absence of emotional
response). Most males with PTSD (94.6%) reported combat-related events as their
index trauma. In contrast the majority of womenwith PTSD (71.4%) reported sexual
assault as their index trauma. The majority of control participants (77%) reported
exposure to potentially traumatic events; of those, military and civilian events were
equally represented (48% and 50%, respectively). Lifetime history of non-PTSD Axis I
diagnoses were evaluated with the SCID (First et al., 2002) using DSMIV-TR criteria.
Co-morbidities are detailed in Table S1 in Supplement 1. None of the control
participants met current diagnostic criteria for any Axis I disorder.

2.3. MEG data acquisition

As described previously (Georgopoulos et al., 2007; 2010), subjects lay supine
within the electromagnetically shielded chamber and fixated their eyes on a spot
65 cm in front of them for 60 s. MEG data were acquired using a 248-channel axial
gradiometer system (Magnes 3600WH, 4-D Neuroimaging, San Diego, CA), band-
filtered between 0.1 and 400 Hz, and sampled at 1017.25 Hz. Data with artifacts
(e.g., eyeblinks, saturation, etc.) were eliminated from further analysis. Subjects
were monitored during MEG acquisitions using a video camera to detect possible
motion of the head; no such motion was detected.

2.4. Data pre-processing and analysis

All MEG data underwent ‘prewhitening’ (Box and Jenkins, 1976; Priestley, 1981)
using a (50,1,1) ARIMA model. Matlab (version 2011b) was used to fit the model and
obtain innovations (i.e. residuals). All possible pairwise zero-lag cross-correlations
(N¼30,628, given 248 sensors) were computed between the prewhitened MEG
time series. Finally, the partial, full-rank zero-lag cross-correlations PCC0

ij between
i and j sensors (SNI) were computed for all sensor pairs; thus, for any given pair of
sensors (from a total of 248) the effects of the remaining 246 sensors were
partialed out. The PCC0

ij were transformed to z0ij using Fisher’s (1958) z-transforma-
tion to normalize its distribution

z0ij ¼
1
2
ln

1þPCC0
ij

1�PCC0
ij

ð1Þ

2.4.1. Unsupervised analysis
Pearson's correlation coefficient was used to compare the distributions of z0ij among

subject groups. For each pair of subjects, correlation coefficient was computed over all

Table 1
Demographic and clinical characteristics of the 432 study participants.

Controls (n¼235) PTSD w/o co-morbidities (n¼138) PTSD with co-morbidities (n¼59)

Males (%) 222 (94%) 121 (88%) 43 (73%)
Age (mean7S.D.) Males 60714 (n¼222) 52715 (n¼121) 47716 (n¼43)

Females 42716 (n¼13) 45710 (n¼17) 42714 (n¼16)
PTSD score (mean7S.D.) Males 17.771.8 40.274.5 41.775.1

Females 17.672.1 41.974.0 42.573.6
Psychotropic medication 26 (11%) 88 (64%) 10 (17%)
Trauma exposure 181 (77%) 138 (100%) 58 (98%)

L.M. James et al. / Psychiatry Research: Neuroimaging 231 (2015) 1–72



30,628 z0ij between the subjects. These correlation coefficients were used as the simila-
rity measure in a classical multidimensional scaling algorithm (MDS) to obtain a two-
dimensional representation of the data (Gower, 1966).

2.4.2. Missing data methods
Cross-correlations with any missing values among the 432 subjects were

excluded. Alternatively, missing cross-correlations could be imputed using the
K-nearest neighbor approach (Troyanskaya et al., 2001), implemented in the
R package imputation for sensitivity analysis.

2.4.3. Age adjustment
Since the PTSD subjects were significantly younger than the control subjects

(Wilcoxon test p-Valueo0.0001 for all subjects and for males only), we imple-
mented an age-adjustment procedure, similar to that proposed in Lu et al. (2006),
prior to analysis, as described in the Supplemental material.

2.4.4. Time adjustment
Since PTSD and control subjects were not recruited at equal rates throughout

the course of the study, we adjusted for the potential confounding effect of time by
excluding those cross-correlations that were significantly associated with
recruitment time.

2.4.5. Supervised analysis
The Lasso penalized regression analysis was used to fit a prediction model for

PTSD (Tibshirani, 1996; Friedman et al., 2010). LASSO is a form of regularized
regression that performs model selection by imposing an L1 penalty on the size of
the coefficients. LASSO is especially effective in problems where the number of
predictors far exceeds the number of observations (Wu and Lange, 2008; Wu et al.,
2009). Details of the LASSO method are provided in the Supplementary material.
The men (222 controls and 121 pure PTSD) were randomly divided into training
and test sets (stratified by group). The test set consisted of 25 PTSD and 25 control
males. Age-adjusting weights were computed for the training and test sets
separately. Cross-correlations that were significantly associated with recruitment
time in the training set were excluded. The Lasso with 10-fold cross-validation was
used to select the optimal model based on the training data. The predicted
probability of PTSD (or a PTSD score) was calculated for each subject in the training
set. In order to classify patients into PTSD and control groups based on their
estimated probability of PTSD, a threshold was chosen to maximize the sum of
sensitivity and specificity in the training data. The optimal model was validated
using the test set. The predicted probability of PTSD was calculated for each subject
in the test set based on the optimal model. A subject was classified as PTSD if his/
her PTSD score was above the threshold; otherwise, the subject was classified as
control. The optimal model was also applied to classify the male PTSD veterans
with co-morbidities, and the female veterans. This procedure was repeated 1000
times, including random allocation of the men into training and test sets (stratified
by group, control vs PTSD without co-morbidities), the computation of the age-
adjusting weights, time adjustment, and the selection and validation of the optimal
model. The area under the curve (AUC), sensitivity and specificity of the classifiers,
and the correlation between the predicted and the actual PTSD scores were
estimated using the test set by averaging over the 1000 iterations. The sensitivity
of the optimal models in PTSD males with co-morbidities was also assessed by
averaging over 1000 iterations.

3. Results

3.1. Unsupervised analysis

Fig. 1 displays the classical MDS representation of the data in
two dimensions. Shown in Panel A is the two-dimensional
representation of all subjects. Datapoints were colored to distin-
guish the PTSD and control groups, males and females, and
subjects with co-morbidities. Panel B displays men without co-
morbidities. The PTSD and control groups appear distinct; in
addition, the control males group into two distinct clusters. Panel
C displays the same two-dimensional plot as in Panel A, but the
subjects are now colored to show age groups. The median age of
60 was used as the cutoff point for age. The subjects do not appear
to group into clusters based on age. Finally, Panel D displays
datapoints for all subjects, colored to represent gender. Males and
females appear as markedly distinct groups, although some of the
female controls overlap with male controls (see Panel A).

3.2. Supervised analysis

Sixteen percent of the 30,628 cross-correlations had at least
one missing value among the 432 subjects. The median and mean
numbers of missing values were 1 and 7, respectively, among the
cross-correlations with missing values. In particular, over 10% of
the 432 subjects had missing values for all 247 cross-correlations
involving sensor 19, indicating that this sensor could be dysfunc-
tional. All cross-correlations with any missing values were
excluded, leaving 25,878 cross-correlations for analysis. When
missing cross-correlations were imputed using the K-nearest
neighbor approach, the results and conclusions reported here
remained unchanged and were not sensitive to the number of
nearest neighbors used (data not shown).

The male veterans without co-morbidities (n¼343) were ran-
domly divided into a training and test set stratified by group (controls
vs PTSD). That is, 25 subjects were randomly selected from each the
PTSD male and the control male groups without co-morbidities to
form the test set (n¼50). The rest of the male veterans without co-
morbidities were assigned to the training set (n¼293). Cross-
correlations that were significantly associated with recruitment time
in the training set (po0.05) were excluded, leaving 14,583 cross-
correlations for analysis. Using the training data, a prediction model
was constructed using the Lasso penalized regression analysis that
included a 10-fold cross-validation procedure to select the optimal
model. The cross-validation plot is provided in Fig. S1, panel A of
Supplement 1. The full solution paths of the Lasso coefficients are
displayed in Fig. S1, panel B of Supplement 1. The optimal model,
corresponding to lambda¼0.0324 (log(lambda)¼�3.43), consisted
of 97 non-zero coefficients. Thus, most of the 14,583 coefficients were
shrunk to zero.

The optimal model was validated on the training data them-
selves (n¼293), the test data (n¼50), and was applied to female
veterans without co-morbidities (n¼30) and veterans with co-
morbidities (43 males and 16 females). Shown in Fig. S2 in
Supplement 1 are receiver operating characteristic (ROC) plots
for the optimal model applied to training data, test data and the
female veterans without co-morbidities. AUC were 1.00, 0.96
and 0.79 for the training data (Fig. S2, panel A in Supplement 1),
test data (Fig. S2, panel B in Supplement 1), and females without
co-morbidities (Fig. S2, panel C in Supplement 1), respectively.

Fig. 2 shows the estimated PTSD (red circles) and control scores
(green circles) for each subject in the training data (Fig. 2A), test
data (Fig. 2B), and for women (Fig. 2C), with and without co-
morbidities. Note that for each subject, the PTSD and control
scores add up to one. In the training set, 100% of PTSD males
without co-morbidities and 98% of controls were correctly classi-
fied. In the test set, 92% of PTSD males without co-morbidities and
92% of controls were correctly classified. Among PTSD males with
co-morbidities, 88% were correctly classified. Lastly, the optimal
model correctly classified 77% of female controls, 63% of PTSD
females without co-morbidities and 60% of PTSD females with co-
morbidities.

The data were then divided into training/test sets 1000 times
and each time the above model building procedure was repeated
using the training set and validated using the test set. The number
of non-zero coefficients in the 1000 optimal Lasso models ranged
from 20 to 135 with a median of 58.

Table 2 shows AUC, sensitivities and specificities of the Lasso
classifier as well as the correlation between the predicted and the
actual PTSD scores in the training set, test set, and in females
without co-morbidities averaged over the 1000 iterations of the
procedure. Provided in Table 2 is also the average sensitivity of the
Lasso classifier in veterans with co-morbidities, calculated over the
1000 iteration of the model-building procedure.

L.M. James et al. / Psychiatry Research: Neuroimaging 231 (2015) 1–7 3



Similar results were obtained for both medicated and unmedi-
cated participants and when missing cross-correlations were
imputed instead of being excluded (data not shown).

4. Discussion

The present study was aimed at developing and evaluating a
PTSD diagnostic algorithm based on MEG SNIs. Results of the
present study demonstrate that SNIs provide a highly accurate
objective means of differentiating veterans with PTSD from
healthy control veterans, demonstrating robust evidence of a PTSD
diagnostic algorithm. These findings corroborate and extend prior
research indicating that anomalies in SNIs reflect a putative
biomarker of PTSD (Engdahl et al., 2010; Georgopoulos et al.,
2010; James et al., 2013).

Results of both the classical MDS representation of the data and
the classification analyses revealed several intriguing findings.
First, regarding the MDS analyses, individuals with PTSD appear
to be highly distinct from controls. Second, this distinction is more
pronounced in male versus female veterans. Third, individuals
with PTSD plus comorbid disorders cluster together and overlap
with individuals with pure PTSD. Finally, regardless of diagnostic
status, individuals clustered together based on gender but not age,
suggesting significant gender differences in SNI. In parallel, the
supervised classification analyses revealed a remarkably high

correct classification rate, providing further evidence of a distinct
difference in SNIs for veterans with PTSD and controls. Classifica-
tion accuracy was good, albeit somewhat reduced, when comorbid
conditions were included, suggesting that the PTSD neural signa-
ture can be detected among neural anomalies associated with
other psychiatric disorders. Last, correct classification rates were
higher for males than females, although relatively few women
were included in the present study. Taken together, results of the
MDS and the supervised classification analyses demonstrated that
neural functioning in individuals with PTSD, regardless of comor-
bid psychiatric diagnoses, is highly distinct from controls, parti-
cularly among male veterans, and can be used as a diagnostic test
to determine patient disease status.

Both the gender distinctions observed in the MDS analyses and
relatively weaker classification accuracy among women compared
to men were unexpected. Regarding the MDS, female controls
overlapped with male controls, suggesting minimal differences in
SNIs between the two control groups. In contrast, females with
PTSD (regardless of comorbid psychopathology) formed a dis-
tinctly different cluster from men with PTSD with relatively no
overlap, suggesting significant differences in SNI between men and
women with PTSD. This difference likely underlies the relatively
weaker classification accuracy among women, particularly since
the classification training data included only men. The observed
gender differences in SNI may be attributable, in part, to differ-
ences in trauma type. Indeed, combat-related traumatic events

Fig. 1. Classical multidimensional scaling representation for all 432 subjects (Panel A), men only (Panel B), all 432 subjects, by age (Panel C), and all 432 subjects, by gender
(Panel D). (A) All 432 subjects. (B) Males only. (C) All 432 subjects, by age. and (D) All 432 subjects, by gender.
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were most prevalent among male veterans whereas sexual assault
was the most common trauma type for female veterans. Future
studies including a larger sample of womenwith diverse traumatic
experiences are imperative to parse whether the gender differ-
ences observed here reflect gender-specific or trauma-specific
PTSD neural signatures. Nonetheless, the classification rate of
females with PTSD was still high, strongly suggesting that corre-
lated brain network activity (i.e., SNIs) is a definitive biomarker of
PTSD, regardless of gender.

Several potential PTSD biomarkers including disturbances in
hormones or neurotransmitter systems, impaired physiological
responses to stimuli, and structural or functional brain abnormal-
ities have been investigated (Lanius et al., 2002; Yehuda et al.,
2002; Karl et al., 2006; Pitman et al., 2006; Geuze et al., 2008;

Kovacic et al., 2008; Eckart et al., 2011; Zolad and Diamond, 2013);
yet, none have previously emerged as definitive PTSD biomarkers.
Indeed, to be useful, a PTSD biomarker must first be both
reproducible and highly accurate; many previously proposed
biomarkers meet one but not both of these criteria. In contrast,
in conjunction with Georgopoulos et al. (2010), we have now
demonstrated that SNIs distinguish PTSD from control participants
with highly accurate (4 90%) results in two studies (it should be
noted that some of the PTSD participants here overlap with
Georgopoulos et al. (2010); however, the majority of study
participants [83%] were original to the present analyses). The fact
that supervised classification analyses based on SNI yielded493%
accuracy in the present study is remarkable, particularly for a
disorder that historically was considered primarily a psychological

Fig. 2. Predicted PTSD scores (red circles) and control scores (1-PTSD score, green circles) for each subject in the training set, test set and for females, with and without
co-morbidities. (a) MALES, training set, (b) MALES, test set, (c) FEMALES, test set.

Table 2
Area under the curve, sensitivity and specificity of the Lasso classifier and correlation between the predicted and the actual PTSD scores, in the training and test data,
averaged over 1000 iterations.

AUC Sensitivity Specificity Correlation with PTSD score

Mean [95% CI] Mean [95% CI] Mean [95% CI] Mean [95% CI]

Veterans w/o co-morbidities Training (n¼293) 0.981 [0.955, 1.00] 0.989 [0.948, 1.00] n¼96 0.945 [0.878, 1.00] n¼197 0.839 [0.739, 0.943]
Test (n¼50) 0.934 [0.859, 995] 0.874 [0.719, 1.00] n¼25 0.894 [0.760, 1.00] n¼25 0.750 [0.603, 0.875]
Females (n¼30) 0.819 [0.725, 0.906] 0.737 [0.471, 0.941] n¼17 0.719 [0.498, 0.923] n¼13 0.483 [0.340, 0.609]

Veterans with co-morbidities (all PTSD) Males (n¼43) NA 0.879 [0.721, 0.953] NA NA
Females (n¼16) NA 0.669 [0.533, 0.800] NA NA
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rather than biological phenomenon. Ideally, evaluation of a bio-
marker must also be relatively non-invasive. The findings in the
present study are based on 1-min recordings of MEG resting-state
brain activity without evocation of traumatic memories, consistent
with that characteristic. The ability of such a short, non-invasive
test to provide highly accurate results firmly attests to the power
of MEG and suggests that evaluating correlated neural network
activity (i.e., SNI) is the optimal approach for extracting informa-
tion from resting-state brain activity.

The neurobiological underpinnings of SNI, and alterations
thereof, are not fully understood but appear to be genetically
influenced. We have previously demonstrated that different forms
of the apolipoprotein E (apoE) genotype systematically affect SNI
(Leuthold et al., 2013). Furthermore, we have demonstrated an
influence of apoE on PTSD symptomatology (Peterson et al., in
press). Thus, alterations in SNI observed in those with PTSD may
be partially accounted for by genetic variations; however, neural
network properties are likely multiply determined and additional
research is needed to identify other biological contributors.

There are several notable strengths of the present study. First, a
relatively large sample of veterans with PTSD, both with and
without comorbid psychiatric disorders, participated in the study
thereby increasing generalizability of the findings to other veteran
populations. Second, unlike many other imaging techniques that
rely on metabolism or blood flow, MEG provides a direct measure
of brain function and is ideally suited to evaluate neural interac-
tions, the essence of brain functioning. Finally, the study used a
rigorous statistical analysis approach to construct the classification
algorithm and develop its diagnostic performance.

4.1. Limitations

The present study reinforces the utility of MEG SNI as a PTSD
biomarker and highlights the application of a diagnostic algorithm
based on SNIs with remarkable accuracy; however, the findings
must be considered in the context of limitations. For instance, a
relatively small sample of female veterans were included in the
present study, and the classification accuracy for those women
was lower than in men, raising questions about observed gender
differences. In addition, veterans with uncomplicated PTSD and
control veterans were the focus of recruitment efforts; conse-
quently, comorbidity rates were relatively low and may not
represent the majority of veterans with PTSD. Similarly, though
individuals with subthreshold PTSD symptoms are quite common
clinically, they were not included in the present analyses. Addi-
tional research addressing these limitations is important for
evaluating real-world applicability of the SNI biomarker. The
present study replicates and extends findings from Georgopoulos
et al. (2010); however, due to overlap in some of the PTSD
participants, replication of the findings in an independent sample
is needed. Finally, given the cross-sectional nature of the present
study, an important characteristic of a PTSD biomarker – namely,
clinical utility, or change in relation to an individual's clinical
status – was not evaluated. Longitudinal studies tracking SNI in
relation to treatment response will be beneficial in further
cementing SNI as a PTSD diagnostic biomarker.

4.2. Conclusions

The present study demonstrates the development and applica-
tion of a highly accurate PTSD diagnostic algorithm based on SNIs.
The findings validate SNI as a PTSD biomarker and offer evidence
that SNI anomalies associated with PTSD are manifest regardless of
comorbid psychiatric diagnoses. Although the findings were
robust across gender, they were somewhat stronger among men.

Additional research is required to illuminate the nature of the
gender differences in SNI identified in the present study.
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