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Abstract Continuous and sequential movements are

controlled by widely distributed brain regions. A series of

studies have contributed to understanding the functional

role of these regions in a variety of visuomotor tasks.

However, little is known about the neural interactions

underpinning continuous movements. In the current study,

we examine the spatiotemporal neural interactions under-

lying continuous drawing movements and the association

of them with behavioral components. We conducted an

experiment in which subjects copied a pentagon continu-

ously for *45 s using an XY joystick, while neuromag-

netic fluxes were recorded from their head using a

248-sensor whole-head magnetoencephalography (MEG)

device. Each sensor time series was rendered stationary and

non-autocorrelated by applying an autoregressive inte-

grated moving average model and taking the residuals.

We used the directional variability of the movement as a

behavioral measure of the controls generated. The main

objective of this study was to assess the relation between

neural interactions and the variability of movement direc-

tion. That is, we divided the continuous recordings into

consecutive periods (i.e., time-bins) of 51 steps duration

and computed the pairwise cross-correlations between the

prewhitened time series in each time-bin. The circular

standard deviation of the movement direction within each

time-bin provides an estimate of the directional variability

of the 51-ms trajectory segment. We looked at the asso-

ciation between neural interactions and variability of

movement direction, separately for each pair of sensors, by

running a cross-correlation analysis between the strength of

the MEG pairwise cross-correlations and the circular

standard deviations. We identified two types of neuronal

networks: in one, the neural interactions are correlated with

the directional variability of the movement at negative

time-lags (feedforward), and in the other, the neural

interactions are correlated with the directional variability of

the movement at positive time-lags (feedback). Sensors

associated mostly with feedforward processes are distrib-

uted in the left hemisphere and the right occipital–temporal

junction, whereas sensors related to feedback processes are

distributed in the right hemisphere and the left cerebellar

hemisphere. These results are in line with findings from a

series of previous studies showing that specific brain

regions are involved in feedforward and feedback control

processes to plan, perform, and correct movements. Addi-

tionally, we looked at whether changes in movement

direction modulate the neural interactions. Interestingly,

we found a preponderance of sensors associated with

changes in movement direction over the right hemi-

sphere—ipsilateral to the moving hand. These sensors

exhibit stronger coupling with the rest of the sensors for
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trajectory segments with high rather than low directional

movement variability. We interpret these results as evi-

dence that ipsilateral cortical regions are recruited for

continuous movements when the curvature of the trajectory

increases. To the best of our knowledge, this is the first

study that shows how neural interactions are associated

with a behavioral control parameter in continuous and

sequential movements.

Keywords Magnetoencephalography � Neural

interactions � Directional variability of movement �
Feedforward–feedback motor control

Introduction

In daily life, humans are capable of performing a diverse

variety of movements. Some of them are executed auto-

matically (e.g., reflexes), whereas others are more complex

and produced by combining multiple discrete movements

in a proper sequence. The question of how the brain gen-

erates a sequence of actions to achieve a certain behavioral

goal, such as writing, driving vehicles, and navigating

around a city, is a topic of many research studies. Elec-

trophysiological studies in non-human primates and clini-

cal studies in patients with brain damage have contributed

greatly to understanding the role of distinct cortical regions

in continuous and sequential movements (Luria and

Tsvetkova 1964; De Renzi 1982; Averbeck et al. 2003,

2009; see review from Caminiti et al. 2010). Despite the

significant contribution of these studies, they are limited in

exploring only specific brain regions. To gain a better

understanding of the neural mechanisms underlying con-

tinuous and sequential movements, we need to understand

not only the functional properties of these areas, but also

their connectivity and the spatiotemporal interactions

among them. Modern neuroimaging studies, such as mag-

netoencephalography (MEG), provide the technology to

gather simultaneous activity across the whole brain,

acquiring a global perspective on the dynamic networks

established in the brain.

A number of studies have used neuroimaging techniques

to explore the characteristics of dynamic brain networks

established in a variety of motor control tasks, such as self-

paced finger extensions (Gerloff et al. 1998), simple finger

movements with different rates (Toma et al. 2002),

reaching (Gevins et al. 1983), grasping (Grol et al. 2007),

sequences of bimanual movements (Andres et al. 1999),

and copying of geometrical shapes (Leuthold et al. 2005).

Although such experiments have contributed to formulate

the idea that large cortical networks interact and commu-

nicate to generate movements, they do not address the

question of how cortical interactions are related to

behavioral control parameters of the tasks. In the current

study, we explore the association between neural interac-

tions and behavioral control parameters in a continuous and

sequential movement task. We conducted an experiment in

which subjects were instructed to copy continuously a

pentagon using an XY joystick, while neuromagnetic

fluxes were recorded from their head using a 248-sensor

whole-head MEG device. In drawing a copy of the penta-

gon, the subjects should generate a sequence of straight and

curved movements to represent the sides and the corners of

the shape, respectively, in a proper spatial relationship.

Therefore, we consider the changes in the movement

direction as a behavioral control parameter of the task. The

goal of this study is to assess how neural interactions vary

with changes in movement direction. Our hypothesis is that

motor behavior occurs along a continuum of feedforward

and feedback control schemes. That is, when you intend to

change direction, the sensorimotor system generates

appropriate control signals for changing movement direc-

tion (forward) and uses mechanisms to monitor and correct

that change (feedback).

To test this hypothesis, we assessed the relation between

neural interactions and variability of movement direction.

We used Box–Jenkins time series analysis (Box et al. 2008)

to remove confounding autocorrelations and trends from

the MEG raw data. We divided the continuous recording

into consecutive time-bins of 51 ms and computed the

cross-correlations between pairs of sensors over ±25 time-

lags including zero (*51 ms) within each time-bin. This

number of lags was chosen because we were interested in

short-range neural interactions. We assessed the relation

between neural interactions and directional variability of

movement by performing a cross-correlation analysis

between the strength of the peak MEG cross-correlations

and the circular standard deviations across all pairs of

sensors and subjects.

In accordance with our hypothesis, the results showed

that interactions between brain regions vary with the

directional variability of the movement in a feedforward–

feedback control scheme. We found interactions in

networks of MEG sensors that are correlated with the

directional variability of movement at negative (forward)

and positive (feedback) time-lags. The sensors that are

mainly involved in feedforward networks are distributed in

the left hemisphere and the right occipital–temporal junc-

tions. On the other hand, the sensors that are mostly

involved in feedback networks are located in the right

hemisphere and the left cerebellar hemisphere. These

results are consistent with a series of studies showing that

specific cortical and subcortical regions are involved in

feedforward and feedback control processes in generating

movements (Desmurget and Grafton 2000; Shadmehr and

Krakauer 2008). However, the novelty of our study is that
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we characterized the feedforward and feedback control

mechanisms not by measuring the activity of particular brain

regions but by looking at the ‘‘whole’’ brain and relating the

neural interactions with a behavioral control parameter.

We were also interested in testing whether there are

any differences in the pattern of neural interactions

between straight and curved movements. To test that, we

assigned all trajectory segments into two groups based on

their circular standard deviation—trajectory segments

with low (group 1) and high (group 2) directional vari-

ability—and performed a two-sample t test analysis

between the pairwise MEG cross-correlations of the two

groups. We identified pairs of sensors located in the right

hemisphere—ipsilateral to the moving hand—that have

different coupling strengths between the two groups.

These sensors exhibited stronger coupling with the rest of

the sensors for curved than straight trajectory segments.

Although this finding may seem counterintuitive, it

complements other studies which suggested that ipsilat-

eral brain areas are recruited for movements with higher

indices of difficulty (Rao et al. 1993; Salmelin et al. 1995;

Seidler et al. 2004).

Methods

The data for this analysis are subset of a dataset from a

previous study conducted in our laboratory (Leuthold et al.

2005). In the following, we give a brief description of the

experimental paradigm, the data acquisition, and the data

preprocessing (for more information see Leuthold et al.

2005).

Subjects

Ten healthy right-handed subjects (23–41 years old, 5 men

and 5 women) with normal or corrected-to-normal vision

and with no known neurological or physical dysfunction

participated in the MEG imaging study for monetary

compensation. The appropriate institutional review board

approved the study protocol, and informed consent was

obtained prior to the study based on the Declaration of

Helsinki. All subjects denied any history of neurological or

psychiatric illness, including drug/alcohol abuse. Addi-

tionally, no subjects had abnormal neurological magnetic

resonance imaging (MRI) studies.

Experimental paradigm

Task

Subjects were instructed to copy the outline of a pentagon

continuously using an XY joystick with the right hand,

while fixating on a spot of green light on the center of the

pentagon. They copied the pentagon counterclockwise at

their own speed without visual feedback of the joystick

movement.

Experimental set-up

The task stimulus was generated by a computer and was

presented on a display 62 cm in front of the subjects, using

a liquid crystal display (LCD) project and a periscopic

mirror system. The 2-D pentagon displayed subtended

approximately 10� of visual angle. The subjects lay supine

in the recording chamber having their head inside the

cryogenic helmet-shaped Dewar. They copied the pentagon

using a 2-D joystick (joystick model 541 FP, Measurement

Systems, Norwalk, CT; remodeled by removing all the

magnetic parts). The joystick was placed on a rectangular

plastic sheet (22.6 9 19.5) cm2 and raised 3.5 cm above

the resting bed and tilted at an angle of 30.6�.

Data acquisition

Magnetoencephalography (MEG)

Brain activity was recorded using a 248-sensor whole-head

axial gradiometer MEG system (Magnes 3600 WH, 4-D

neuroimaging, San Diego, CA, USA). The cryogenic hel-

met-shaped Dewar of the MEG system was located inside a

shielded room that reduced electromagnetic and environ-

mental noise. The MEG data were recorded at 1,017.25 Hz

and filtered down to 0.1–400 Hz during acquisition.

Hand movement

The XY position of the joystick was sampled synchro-

nously at the same rate as the MEG signals (i.e.,

1,017.25 Hz) and incorporated directly into the MEG data

file to ensure correct time alignment.

Data analysis

Preprocessing

The MEG data were 248 time series with *45,000 values

per sensor per subject. The obstructive cardiac artifact was

removed from the MEG data using the event-synchronous

subtraction method (Leuthold 2003).

Prewhitening

Neurophysiological time series often are not stationary

with respect to their mean and variance and in many cases

are dominated by trends, which should be recognized
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before any further analysis is done. Since we were inter-

ested in assessing the interactions between the sensor time

series by calculating the cross-correlation function (CCF),

it is required, from first principles (Jenkins and Watts 1968;

Granger and Newbold 1974, 1977; Priestley 1981; Box

et al. 2008), that individual series be rendered stationary and

non-autocorrelated for their cross-correlation to be valid

(i.e., not spurious) assessments of these interactions.

Stationarity implies that statistical parameters do not vary

along the time series—that is, they are invariant under

translations of the time axis; and lack of significant auto-

correlation is indicated by a practically flat autocorrelogram

of the series. For that purpose, we used autoregressive

integrated moving average (ARIMA) modeling to remove

any autocorrelation and possible trends in the recorded MEG

data (‘‘prewhitening’’ the MEG time series). Building

on previous studies, we found that an ARIMA(25,1,1)

model was adequate to obtain quasi-stationary time series.

MEG cross-correlation analysis

To study the spatiotemporal neural interactions, we divided

the prewhitened MEG time series into N time-bins of

length 51 time-steps (*51 ms) and performed a cross-

correlation analysis between all possible pairs of sensors,

within each time-bin, over ±25 time-lags (*51 ms—1 lag

is equivalent to 0.983 ms, as the sampling frequency is

1,017.25 Hz) including zero-lag. This number of lags was

chosen because we are interested in relative short-range

neural interactions. The cross-correlation analysis was

performed using the IMSL statistical routine DCCF

(Compaq Visual Fortran Professional Edition, version

6.6B). We normalized the distribution of the pairwise

cross-correlation before averaging across subjects using

Fisher’s z-transformation, Eq. (1).

zijðtÞ ¼
1

2
½lnð1þ ccijðtÞÞ � lnð1� ccijðtÞÞ� ð1Þ

where ccij(t) is the pairwise cross-correlation between

sensor i and j at time-lag t.

To characterize the cross-correlogram, we computed the

sign and the strength of the peak cross-correlation zij(tpeak),

and the time-lag tpeak at which the peak occurred. Hence,

30,628 9 N 9 10 (where N is the number of time-bins and

10 the total number of subjects) peak of cross-correlations

zij(tpeak) with the corresponding tpeak were available for

further analysis.

Movement data

The XY output of the joystick was smoothed using cubic

spline approximation to reduce noise from the joystick.

To measure the variability of the movement direction

within each time-bin, we computed the circular standard

deviation �S of each 51-ms trajectory segment as follows:

�S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 ln �Rð Þ
q

;

�R ¼ 1

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

M

t¼1

cos ht

 !2

þ
X

M

t¼1

sin ht

 !2
v

u

u

t ð2Þ

where M is the length of the time-bin (51 ms) and ht is the

instantaneous direction of the movement at any time t—the

lower the circular standard deviation, the lower the vari-

ability of movement direction. For example, the circular

standard deviations of the ‘‘green’’ and ‘‘red’’ 51-ms-long

segments of the movement trajectory in Fig. 1 are 4.9848

and 35.4538, respectively.

Analysis of the relation between neural interactions

and variability of movement direction

We assessed the relation between neural interactions and

variability of movement direction, separately for each pair

of sensors, performing cross-correlation analysis between

the time series of the strength of the peak MEG cross-

correlations zij(tpeak) and the time series of the circular

standard deviations �S. The flowchart of the analysis is

presented in Fig. 2. The time series of �S were not stationary

for all subjects, and for that reason we applied an ARIMA

model to remove the autocorrelation structure of the

circular standard deviation time series. After extensive

ARIMA modeling and diagnostic checking, including the

computation and evaluation of the autocorrelation function

(ACF) and the partial autocorrelation function (PACF) of

the residuals, we found that ARIMA(10,1,0) was adequate

to yield quasi-stationary residuals. The time series of

zij(tpeak) were quasi-stationary and did not require ARIMA

modeling. We performed the cross-correlation analysis

within ±3 time-lags, including zero (note that 1 time-lag

corresponds to ±25 time-lags in the cross-correlation

analysis between the stationary time series of the MEG

signals). We chose this time-lag based on findings from

previous studies, which showed that the time-lag between

neural activity and hand movement varies with the curva-

ture of the movement trajectory from 0 to 200 ms (Moran

and Schwartz 1999a, b; Wu et al. 2006).

This analysis yielded 30,268 cross-correlograms, by

which the relation between the MEG signal interactions

and the variability of movement direction was quantified

and summarized by measuring the peak of the cross-cor-

relogram and the time-lag at which the peak occurred. The

peak of the cross-correlogram indicates the strength of

the coupling between MEG signal interactions and the

directional variability of the movement. However, in this

analysis, we focused on the time-lag at which the peak of

162 Exp Brain Res (2012) 222:159–171
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the cross-correlation occurred, because it indicates whether

neural interactions precede (i.e., negative time-lags) or

follow (i.e., positive time-lags) changes in movement

direction. Note that in a control theory context, negative

and positive time-lags are related to feedforward and

feedback motor processes, respectively (Box et al. 2008).

Feedforward motor control processes are related to plan-

ning and execution of movements, whereas feedback motor

control processes are associated with error-correction of

movements.

We are interested in identifying the cortical regions that

contribute the most to feedforward and feedback processes.

To accomplish this, we counted the number of positive (p)

and negative (n) time-lags tpeak, for each sensor with the

rest of 247 sensors, across all subjects. If there were more

negative than positive time-lags, we considered that this

Fig. 1 Illustration of two

51-ms-long segments (out of

*45 s total) of the movement

trajectory with low (green
segment) and high (red
segment) circular standard

deviation (Slow = 4.9848,

Shigh = 35.4538). Black arrows
indicate the instantaneous

direction of the movement

Fig. 2 The flowchart of the technique used to assess the relation between neural interactions and variability of movement direction (see

‘‘Methods’’ section for more details)

Exp Brain Res (2012) 222:159–171 163
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sensor is related mostly to a feedforward control scheme;

otherwise, it was considered to contribute mostly to a

feedback control scheme.

Comparison of neural interactions between straight

and curved movements

We were also interested in testing whether there are any

differences in neural interactions between straight and

curved movements in the copying task. To test that, we

classified the time-bins into two groups based on the cir-

cular standard deviation: (1) time-bins with low �S (straight

movements) and (2) time-bins with high �S (curved move-

ments). The time-bins were categorized based on the his-

togram mean of �S for each subject. A time-bin was placed

in group 1 if �S was less than 20 % of the histogram mean;

otherwise, it was placed in group 2. Although this threshold

was selected somewhat arbitrarily, trajectory segments

with �S less than 20 % of the histogram mean were almost

straight movements with substantially low directional

variability. Other threshold values (e.g., 15 and 25 %) were

also tested in this analysis and gave similar results. We

then performed a two-sample t test for each pair of sensors

between the two groups and used the P value for the group

factor as a quantitative measure of the magnitude of the

effect of the directional variability of movement on the

neural interactions.

Spatial distribution of sensors related to feedforward

and feedback processes

We used the difference between the positive (p) and neg-

ative (n) time-lags tpeak for each sensor to estimate the

spatial frequency distribution of the cortical areas that

contribute the most to feedforward and feedback motor

control processes. In particular, we visualized the absolute

difference between n and p for each sensor that contribute

the most to the feedforward scheme with intermediate

values interpolated using MATLAB� functions: patch, and

convhulln (see Fig. 7). The color intensity is proportional

to the different n - p (blue areas correspond to near-zero

differences and red areas correspond to high differences).

In a similar way, we handle the sensors associated with the

feedback scheme (p - n [ 0) (see Fig. 8).

Spatial distribution of sensors related to changes

in movement direction

In a similar manner, we plotted the spatial distribution of

the sensors that exhibit differences in interactions with

other sensors between straight and curved movements,

using the probability value of the two-sample t test as a

quantitative measure of the magnitude of the effect in

sensor space. For this analysis, we used the log-transfor-

mation of the probability value P to normalize its distri-

bution (i.e., P0 = -ln P). This procedure generates images

in a similar way to a fixed-effect analysis across all subjects

in fMRI studies. However, the difference with the statis-

tical parametric mapping (SPM) in fMRI is that instead of

using the t statistics from the average subject’s activation,

we are using the maximum P0 related to a specific sensor

(out of 247 possible) (see Fig. 9).

Results

MEG cross-correlation analysis

From the 248 MEG sensors, we produced
248

N

� �

� N

time-bins 9 10 subjects cross-correlograms and normal-

ized them using Fisher’s z-transformation (see ‘‘Methods’’

section) before averaging across subjects. We characterized

the cross-correlogram by computing the sign and the

strength of the peak cross-correlation zij(tpeak) and the time-

lag tpeak at which the peak of cross-correlation occurred. Of

the 259,419,160 zij(tpeak), 50.56 % were positive and

49.44 % were negative. The average (mean ± SEM)

positive zij(tpeak) was 0.3235 ± 5.2831 9 10-6 (maximum

zij(tpeak) = 1.4862; ccij(tpeak) = 0.9026); the average neg-

ative zij(tpeak) was -0.3222 ± 5.2346 9 10-6 (minimum

zij(tpeak) = - 0.9774; ccij(tpeak) = -0.7519). Additionally,

we found that 12,471,286 out of 259,419,160 (4.8074 %)

zij(tpeak) had the peak of cross-correlation at zero-lag and

the rest (95.1926 %) at non-zero-lag.

Behavioral data analysis

We divided the XY joystick movement trajectory in 51 ms

time-bins and computed the local circular standard devia-

tion �S of the movement direction within each time-bin to

characterize the directional variability of the movement.

The relative frequency distribution of �S across all time-bins

and subjects is presented in Fig. 3a. To make the distri-

bution more symmetric and homoscedastic, we computed

the log-transformation of �S, Fig. 3b.

Relation between neural interactions and variability

of movement direction

To look at the relationship between neural interactions and

the directional variability of the movement, we computed

the cross-correlation function (CCF) between the time

series of zij(tpeak) (absolute value) and the prewhitened

164 Exp Brain Res (2012) 222:159–171
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log-transformed �S over ±3 time-lags including zero-lag

(1 time-lag corresponds to ±25 time-lags in the cross-

correlation analysis of the MEG time series). Altogether,

306,280 (30,628 pairs of MEG sensors 9 10 subjects)

cross-correlograms were available for further analysis. We

characterized the cross-correlograms by computing the

sign and the strength of the peak cross-correlation zs
ijðtpeakÞ

and the corresponding lag tpeak at which the peak occurred.

Of the 306,280 zs
ijðtpeakÞ, 153,561 (50.14 %) were positive

and 152,719 (49.86 %) were negative. The average

(mean ± SEM) positive zs
ijðtpeakÞ 0.0593 ± 4.6996 9 10-5

ðmaximum zs
ijðtpeakÞ ¼ 0:1662; ccs

ijðtpeakÞ ¼ 0:1647Þ; the

average negative zs
ijðtpeakÞ was -0.0593 ± 4.7199 9 10-5

ðminimum zs
ijðtpeakÞ ¼ �0:1672; ccijðtpeakÞ ¼ �0:1657Þ.

The relative frequency distribution of ccs
ijðtmaxÞ across pairs

of sensors and subjects is illustrated in Fig. 4a.

Next, we focus the analysis on the time-lag tpeak, at

which the peak of the cross-correlation occurred. We found

43,798 (14.30 %) cross-correlograms had their peak at

zero-lag, 131,008 (42.77 %) at negative-lag and 131,474

(42.93 %) at positive lag. Zero-lag indicates synchronous

association between neural interactions and directional

variability of movement. On the other hand, positive or

negative-lag corresponds to asynchronous interactions, in

which one variable drives the other. Specifically, negative-

lag denotes that modulations in neural interactions precede

changes in movement direction and vice versa for positive

lag. The relative frequency distribution presented in

Fig. 4b shows that tpeak is almost uniformly distributed

between ±3 lags. We interpret these results as evidence

that neural interactions vary with the movement direction

in a feedforward–feedback control scheme. We can visu-

alize the neural interactions associated with feedforward

Fig. 3 a Relative frequency distribution of the circular standard deviation, �S, of movement direction for 51-ms trajectory segments, across all

time-bins and subjects (8,460). b Relative frequency distribution of the �S log-transformation

Fig. 4 a Relative frequency distribution of the peak cross-correla-

tions between the strength of neural interactions and the circular

standard deviations across all pairs of sensors and subjects (306,280).

b Relative frequency distribution of tpeak, which corresponds to the

time-lags that peak of cross-correlations occurred

Exp Brain Res (2012) 222:159–171 165
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and feedback control mechanisms by connecting the 248

MEG sensors with red and green lines, respectively.

Figures 5 and 6 illustrate a thresholded (p \ 5 9 10-4)

and scaled view of these networks across the 10 subjects.

Notice the frequent intra and interhemispheric interactions

in both ‘‘feedforward’’ and ‘‘feedback’’ networks. The

spatial distribution of the sensors that contribute the most

in the feedforward control scheme is presented in Fig. 7.

Particularly, Fig. 7a depicts a flattened two-dimensional

(2D) contour plot, whereas Fig. 7b–d shows the right, left,

and rare views of a 3-D plot. Similarly, the spatial distri-

bution of the sensors that contribute the most in feedback

control scheme is presented in Fig. 8. The results showed a

strong focus of sensors associated with the feedforward

scheme in the left hemisphere (contralateral to the moving

hand)—left inferior frontal gyrus (IFG) (A), left superior

temporal gyrus (STG) (B), and left cerebellar hemisphere

(C)—and the right occipital–temporal junction (D). On the

other hand, sensors associated with the feedback scheme

are localized in the right posterior parietal cortex (PPC)

(E), left cerebellar hemisphere (F), and the right lateral

occipital area (LO) (G). These areas were estimated based

on the 3-D sensor layout in the MEG helmet and typical

brain surface reconstructions from brain MRIs using the

integrated BESA (version 5.06, MEGIS Software GmbH,

Gräfelfing, Germany) and Brain Voyager (Electrical

Geodesics, Inc., Eugene OR, USA), package.

Two-sample t test between ‘‘low’’ and ‘‘high’’

directional variability groups

We explored whether there are any differences in neural

interactions between trajectory segments with low (i.e.,

straight movements) and high (i.e., curved movements)

variability of movement direction. Figure 9a, b depicts the

log-transformed (i.e., -ln P) probability value of the two-

sample t test across all subjects for each sensor, in a flat-

tened two-dimensional (2D) contour plot and a 3-D plot,

respectively (see ‘‘Methods’’ section). The color intensity

is proportional to the maximum –ln P related to the specific

sensor (out of 247 possible). The results showed a pre-

ponderance of sensors with stronger effects over the right

hemisphere—ipsilateral to the moving hand. These sensors

are closest to right superior temporal gyrus (A) and the

right occipital cortex (B) and exhibit stronger coupling

with the rest of the sensors for trajectory segments with

high rather than low directional movement variability.

Discussion

Overview

We used Box–Jenkins (Jenkins and Watts 1968; Box et al.

2008) time series analysis to account for dynamic coupling

between MEG stationary time series interactions and

directional variability of movement, in a continuous and

sequential copying task. Our hypothesis was that interactions

between brain areas are associated with movement direction.

The neural interactions can be estimated by correlating time

courses of the MEG signals recorded from different sensors.

However, the time courses of the MEG raw data are typi-

cally non-stationary and highly autocorrelated, and thus, the

Fig. 5 Massively interconnected ‘‘feedforward’’ network, averaged

across the 10 subjects. The red lines denote sensor interactions that are

correlated with the circular standard deviation at negative time-lags.

The color intensity of a line is proportional to the strength of coupling

between the sensors interactions and the circular standard deviation

Fig. 6 Massively interconnected ‘‘feedback’’ network, averaged across

the 10 subjects. The green lines denote sensor interactions that are

correlated with the circular standard deviation at positive time-lags.

The color intensity of a line is proportional to the strength of coupling

between the sensors interactions and the circular standard deviation
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cross-correlation analysis could lead to spurious and

erroneous results (Jenkins and Watts 1968; Granger and

Newbold 1974, 1977; Priestley 1981; Box et al. 2008). The

remedy is to render the time series stationary and non-

autocorrelated for the cross-correlation to be valid (i.e., no

spurious) assessments of interactions. This preprocessing is

called ‘‘prewhitening’’ of the time series and is typically

accomplishing by fitting an ARIMA model to the raw data

and taking the residuals.

To explore the association between neural interactions

and variability of movement direction, we divided the

recording session into time-bins of 51 time-steps and

computed all possible pairwise lagged cross-correlations

within each time-bin using the prewhitened MEG time

series. We characterized each of the cross-correlograms by

computing the sign and the peak of the cross-correlation

and the corresponding time-lag. Additionally, we estimated

the directional variability of the movement within each

time-bin, by computing the circular standard deviation of

the movement direction. The directional variability of the

movement provides an estimate of whether the current

trajectory segment is a straight or a curved movement.

The relation between neural interactions and directional

variability of the movement was assessed separately for

each pair of sensors by correlating the time series of the

strength of the peak MEG cross-correlations and the time

series of circular standard deviations. The results showed

that neural interactions and directional variability of the

movement are coupled in an action-correction scheme (i.e.,

feedforward–feedback control). Particularly, we found

sensor interactions that precede (i.e., feedforward) or fol-

low (feedback) the changes in movement direction. The

sensors associated with feedforward processes are localized

in the left IFG, the left STG, left cerebellar hemisphere,

and the right occipito–temporal junction. On the other

hand, the main loci of sensors associated with feedback

processes are in right PPC, right LO area, and left cere-

bellar hemisphere. Additionally, we tested whether there is
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Fig. 7 a 2-D Spatial distribution of the sensors involved mostly in

the feedforward scheme. The color codes the difference between

negative (n) and positive (p) time-lag tpeak related to the specific

sensor (out of 247 possible), interpolated linearly in sensor space.

b Right, c left and d rear view of the 3-D surface plot using Delaunay

triangulation of MEG sensor coordinates with interpolated, color-

coded n - p values
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any difference in neural interactions between movements

with low and high directional variability. Interestingly, we

found sensors around the right hemisphere, which showed

stronger coupling with the rest of the sensors for trajectory

segments with high rather than low directional variability.

Feedforward–feedback control processes

The involvement of specific cortical regions in feedforward

processes is in line with a series of neurophysiological and

functional neuroimaging studies in copying and tracing

shapes. Moran and Schwartz measured the time interval

between neural activity of cells in premotor and motor

cortices and the movement in a spiral tracing task (Moran

and Schwartz 1999b). They found that neural activity in

these cortical areas precedes the hand movement by several

milliseconds and scales with the curvature of the move-

ment trajectory. Additionally, dipole analysis of the MEG

signals performed previously in our laboratory revealed

consistent dipoles locations in various brain regions

included the left motor cortex, parietal cortex, frontal and

temporal regions, and the occipital cortex (Langheim et al.

2005). Interestingly, most of the STG dipoles were found

in time points preceding the corners (i.e., prior to

change movement direction), suggesting that this region is

involved in feedforward motor control processes. Our

finding that sensors contributing to the feedforward net-

works are also distributed in the IFG area is consistent with

the results from functional neuroimaging studies that

showed that this area is involved in both copying geo-

metrical shapes (Krams et al. 1998) and observing these

shapes prior to the copying task (Tzagarakis et al. 2009).

The involvement of the PPC area in feedback motor

control processes is in line with a series of previous

neurophysiological and clinical studies (see the review by

Buneo and Andersen 2006). Ashe and Georgopoulos

(1994) explored the time course of the ongoing cell activity

in relation to evolving motor parameters for 2-dimensional
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Fig. 8 a 2-D Spatial distribution of the sensors involved mostly in

the feedback scheme. The color codes the difference between positive

(p) and negative (n) time-lag tpeak related to the specific sensor (out of

247 possible), interpolated linearly in sensor space. b Right, c left and

d rear view of the 3-D surface plot using Delaunay triangulation of

MEG sensor coordinates with interpolated, color-coded p - n values

168 Exp Brain Res (2012) 222:159–171

123



movements made toward 8 visual targets. They found that

the timing of the highest correlation (i.e., highest R2)

between firing rates and ongoing movement trajectories in

motor cortex and PPC (area 5) were -90 and ?30 ms,

respectively (Ashe and Georgopoulos 1994). Clinical

studies provide evidence that PPC is involved in error

detection and correction by comparing the differences

between the actual position of the hand and the goal posi-

tion. Particularly, patients with PPC damage are able to plan

reaching movements accurately to stationary objects, but

they failed to correct the movement when the position of the

objects changes unexpectedly (Grea et al. 2002). Disruption

of the parietal cortex in healthy individuals using transcra-

nial magnetic stimulation (TMS) produces similar behav-

ioral deficits in reaching movements with unpredictable

changes in goal position (Desmurget et al. 1999).

An interesting finding in our analysis is that sensors that

are mostly involved in feedback processes are also dis-

tributed around the right occipital lateral area, despite the

absence of novel visual stimulus and eye movements.

However, dipole analysis in the MEG signals found dipoles

in the occipital cortex in time points following the corners

(i.e., the changes in movement direction). This finding

suggests that the visual cortex may have been utilized

within a network of cortical regions to continuously update

the motor template in subjects during the copying task

(Langheim et al. 2005).

Except for cortical areas, which are involved mainly in

either feedforward or feedback processes, we found that the

left cerebellar hemisphere is involved in both motor control

processes. This finding is consistent with a series of motor

control studies, which showed that the cerebellum is

required for predicting sensory outcomes of actions and

compensating of ongoing motor commands (Bastian 2006;

Nowak et al. 2007). This theory is also supported by

clinical studies in patients with cerebellum damage that

encounter significant difficulties in learning new tools and

adapting their behavior to unpredictable changes (Nowak

et al. 2007). Additionally, several computational (Kawato

and Gomi 1992; Houk et al. 1996) and functional imaging

studies (Miall et al. 2000; Van Mier and Petersen 2002)

proposed that activation in the cerebellum is associated

with error-based learning tasks. Particularly, Van Mier and

Petersen found a strong correlation between decreases in

cerebellum activity in left hemisphere and decreases in

errors in a tracing task, suggesting that activation in the left

cerebellum might be related to error detection and cor-

rection (Van Mier and Petersen 2002).

Overall, our results enhance findings from previous

experiments, mainly clinical and electrophysiological

studies, that particular cortical areas are involved in plan-

ning and error-correction in movements. Unlike these

studies, which are limited in exploring only specific brain

areas, the novelty of our study is that we looked at the

‘‘whole brain’’ and estimated the areas that contribute in

action-correction by correlating neural interactions with a

behavioral control parameter. To the best of our knowl-

edge, this is the first study that shows how neural interac-

tions are associated with a behavioral control parameter in

continuous and sequential movements.
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Fig. 9 a 2-D contour plot of color-coded two-sample t test –ln

P values, interpolated linear in sensor space for low versus high

directional movement variability. b 3-D surface plot using Delaunay

triangulation of MEG sensor coordinates with interpolated, color-

coded two-sample t test -ln P values for low versus high directional

movement variability
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Neural interactions related to straight and curved

movements

We were also interested in studying the potential differ-

ences in neural interactions between straight and curved

movements. Electrophysiological studies explored the

association between neural activity and hand movement in

visuomotor tasks recording from motor and premotor cor-

tices and found that the time-lag between neural activity

and hand movement varies linearly with the instantaneous

radius of the trajectory’s curvature—the time-lag is longer

when the trajectory is more curved (Schwartz 1994; Moran

and Schwartz 1999b). These results suggest that for straight

movements, a ‘‘keep moving the same direction’’ signal

transmitted once is more efficient than continuous trans-

mission of the same direction. Once the movement direc-

tion changes rapidly over a short period of time, more

processing time is required, increasing the time interval

between neural activity and hand movement. These studies

focused only on the premotor and motor cortices due to the

inherent limitation of electrophysiological techniques,

whereas they did not provide any information on whether

and how neural interactions vary with the curvature of the

movement trajectory.

In the current study, we tested whether the neural

interactions vary between straight and curved movements.

To test that, we categorized the time-bins of the recordings

into two groups based on the directional variability of

51-ms trajectory segments—that is, a group with low

directional variability (i.e., straight movements) and a

group with high directional variability (curved move-

ments). We tested whether the neural interactions are dif-

ferent between the two groups and found pairs of MEG

sensors that have different interaction strengths between

straight and curved movements. Interestingly, the prepon-

derance of these sensors is distributed over the right

hemisphere—ipsilateral to the moving hand—and specifi-

cally around the superior temporal gyrus and right occipital

cortex. These sensors showed strongest coupling with the

rest of the sensors for trajectory segments with high rather

than low directional variability of movement—that is, for

curved rather than straight movements. Although these

results might seem counterintuitive, since all participants

were right handed, they complement results from previous

studies, which showed that cortical areas ipsilateral to the

hand movement are recruited for movements with higher

indices of difficulty in comparison with simple movements.

For instance, studies in sequential movements showed

ipsilateral motor cortex recruitment when subjects per-

formed complex movements in comparison with simple

finger flexion tasks (Rao et al. 1993; Salmelin et al. 1995).

Similarly, we can argue that the index of difficulty in a

sequential copying task is higher for changing direction

than moving in a straight path, and hence, the difference in

neural interactions between curved and straight movements

is represented mainly in the ipsilateral hemisphere.
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