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Abstract

Background: The current development of brain-machine interface technology is limited, among other factors, by concerns
about the long-term stability of single- and multi-unit neural signals. In addition, the understanding of the relation between
potentially more stable neural signals, such as local field potentials, and motor behavior is still in its early stages.

Methodology/Principal Findings: We tested the hypothesis that spatial correlation patterns of neural data can be used to
decode movement target direction. In particular, we examined local field potentials (LFP), which are thought to be more
stable over time than single unit activity (SUA). Using LFP recordings from chronically implanted electrodes in the dorsal
premotor and primary motor cortex of non-human primates trained to make arm movements in different directions, we
made the following observations: (i) it is possible to decode movement target direction with high fidelity from the spatial
correlation patterns of neural activity in both primary motor (M1) and dorsal premotor cortex (PMd); (ii) the decoding
accuracy of LFP was similar to the decoding accuracy obtained with the set of SUA recorded simultaneously; (iii) directional
information varied with the LFP frequency sub-band, being greater in low (0.3–4 Hz) and high (48–200 Hz) frequency bands
than in intermediate bands; (iv) the amount of directional information was similar in M1 and PMd; (v) reliable decoding was
achieved well in advance of movement onset; and (vi) LFP were relatively stable over a period of one week.

Conclusions/Significance: The results demonstrate that the spatial correlation patterns of LFP signals can be used to
decode movement target direction. This finding suggests that parameters of movement, such as target direction, have a
stable spatial distribution within primary motor and dorsal premotor cortex, which may be used for brain-machine
interfaces.
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Introduction

Brain-machine interface (BMI) technology, in which brain

signals are used to control external prostheses, has been applied

successfully in non-human primates [1-6] as well as in human

subjects [7]. The basic principle of invasive BMI applications is to

relate neural activity, such as extra-cellular potentials from cortical

neurons, to movement parameters such as direction [8], velocity

[9], and position [1], and use this relation to control an external

device. Currently, one of the major limitations that militate against

the widespread use of BMI technology in human subjects is the

lack of long-term stability in recordings of extra-cellular potentials

from single cortical neurons. In this study, we examined the

decoding power of local field potentials (LFP), which may also be

recorded from indwelling electrodes. Since LFP represent the sum

of synaptic dendritic potentials within a volume of cortex, these

signals are thought to have greater stability in time compared to

that of single neurons, making them potentially more suitable for

BMI applications [10]. However, understanding the relation

between LFP and motor behavior is still in its early stages. In this

perspective, initial LFP decoding studies were not especially

encouraging [11,12], however more recent publications have

shown that it was possible to decode information about motor

responses from LFP in premotor [13], motor [14,15] and posterior

parietal cortex [16]. In addition, it was found that direction-related

information could be extracted from both low and high frequency

sub-bands of the LFP signal [13,15,17], and that direction

information may even be extracted during an instructed-delay

period [13]. However, despite the progress made to date on using

LFP to extract information about response direction, the decoding

power obtained using simultaneously recorded LFP, which is what

would be required for effective BMI applications, has been

relatively modest (,0.5 with 8 LFP channels recorded simulta-

neously). Good decoding power (,0.8) has been achieved only

when data from 48 channels recorded in separate sessions were

combined as if they had been recorded simultaneously [14,15].
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However, this practice is likely to overestimate the actual decoding

performance of simultaneously recorded LFP channels.

In the current study, we had four major objectives: (i) to

examine directional information in LFP signals both during an

instructed-delay period before movement and during movement

itself using chronically implanted multi-electrode arrays, (ii) to

compare the strength of directional information from LFP in

primary motor and dorsal premotor cortex, (iii) to compare the

accuracy of directional information extracted from LFP with that

extracted from SUA, and (iv) to investigate the stability of direction

decoding across recording sessions. One of the innovative features

of our study was to discriminate target directions by applying

spatial filters on LFP. To our knowledge, this is the first study that

used this approach.

Materials and Methods

Subjects and task
Two male rhesus monkey (Macaca mulatta), H464 and H564,

were subjects in this study. Care and treatment of the animals

conformed to the U.S. Public Health Service Policy on Humane

Care and Use of Laboratory Animals (Public Law 99–158) and to

the Guide for the Care and Use of Laboratory Animals (National

Academy Press, 1996). Precautions were taken to insure the

welfare of the non-human primates. They were housed in

conditions which took account of their social needs and they

participated in the institutional primate environment enrichment

plan. No procedure that might cause discomfort or pain was

undertaken without adequate analgesia or anesthesia as outlined in

details below. The experimental protocol was approved by the

Institutional Animal Care and Use Committee of the Minneapolis

Veterans Affairs Health Care System.

The monkeys were trained in an instructed-delay center-out

reaching task. They performed two-dimensional horizontal

reaching movements in which they used a manipulandum to

control the movements of a cursor on a visual display from a

central location to one of eight peripheral targets equally spaced

around a circle of ,9 cm radius. To begin a trial, the subject

placed the cursor inside a circular window (radius ,1 cm) at the

center of the display and held it for a control period of 800 ms.

Then, a peripheral circular target was displayed pseudo-randomly

at one of the eight locations and remained visible for 500–700 ms

serving as a cue for the subject. An instructed-delay period of 800–

1000 ms followed the offset of the cue, after which the target re-

appeared at the same location as the cue, thus serving as a ‘GO’

signal. Successful movements were completed within 1000 ms and

finally the subject had to hold the cursor for 800 ms within the

target circle (radius ,1 cm) to obtain a juice reward.

Surgical procedures
All surgical procedures were performed under sterile conditions

and under general anesthesia. The two animals underwent surgery

to place head posts for head stabilization during neural recordings,

and to implant two chronic recording arrays. The intracortical

electrode arrays were placed subdurally in the arm area of M1 and

PMd of the cerebral hemisphere contralateral to the hand

performing the task. Preoperative preparation included the

intramuscular injection of atropine (0.05 mg/kg) to manage

bradychardia, and ketamine (10 mg/kg) to induce anesthesia.

Intraoperative anesthesia was maintained via endotracheal

administration of isoflurane (1–2%). A catheter was placed in

the saphenous vein and 0.9% saline was administered for fluid

management. A heating pad was used to support body

temperature during surgery. Rectal temperature, heart rate,

breathing rate and oxygen saturation were monitored continu-

ously during surgery. Postoperative care included the intramus-

cular injection of dexamethasone (0.5 mg/kg) to reduce inflam-

mation and enrofloxacin (Baytril 3.75 mg/kg) as antibiotic. In

addition, the analgesic buprenorphine (Buprenex 0.05 mg/kg) was

given intramuscularly twice a day for three days.

Data Acquisition
We analyzed the data from three recording sessions in each

subject; there was a gap of one week between sessions 1 and 2 and

one day between sessions 2 and 3.

For H464, the number of trials was 520, 263, and 326 for

sessions 1, 2 and 3, respectively. For H564, the number of trials

was 199, 206, and 103 for sessions 1, 2 and 3, respectively. So, a

total of 1109 and 508 trials were available for subjects H464 and

H564, respectively. LFP signals were recorded using two 10610

Utah microelectrode arrays (Blackrock Microsystems, Salt Lake

City UT); these arrays were 4 mm 64 mm in size, with an inter-

electrode spacing of 400 mm and an electrode length of 1.5 mm.

There were 96 active electrodes in each array from which we

sampled 64 because we lacked a sufficient number of channel

amplifiers for the full set of electrodes. In both monkeys, one array

was implanted in M1 and one in PMd. LFP data were filtered

between 0.3 Hz and 500 Hz and sampled at 1 kHz. Extracellular

potentials were recorded simultaneously from both arrays during

the performance of the task, filtered between 500 Hz and 7.5 kHz

and sampled at 30 kHz. Only spike waveforms greater than a

threshold determined for each recording session were stored for

further processing.

Signal Processing
Using visual inspection, we eliminated LFP channels containing

artifacts, such as power line noise, from the analysis. The number of

PMd channels available for analysis was 25 and 57 for H464 and

H564, respectively; whereas the number of M1 channels available for

analysis was 36 and 59, respectively. These channels were low-pass

filtered with a 220 Hz cut-off frequency and down-sampled to

500 Hz for further analysis. As an initial step, we implemented a

time-frequency analysis to identify sub-bands that were modulated

during the task. For this purpose, the time-frequency surface was

normalized relative to the average baseline power level during the

session [18]. This analysis was implemented separately for channels in

M1 and PMd. On these bases, the LFP signal was sub-band filtered

into five different frequency bands in which we observed systematic

changes during the task: 0.3–4 Hz, 4–10 Hz, 14–22 Hz, 22–30 Hz

and 48–200 Hz. However, despite the high-pass filtering of 0.3 Hz

during recording, we noticed DC artifacts in several trials; therefore

the overall trial mean was subtracted from the data of each trial

before sub-band filtering. The sub-band filtering was performed using

linear phase finite impulse response (FIR) filters designed with a

Blackman window function [19]. The filters were applied in a

forward direction only. The phase delay was eliminated by shifting

the signals backwards by N/2 samples, where N is the filter order. The

order of the filter for each sub-band was adjusted such that signal

attenuation at the cut-off frequencies was -6 dB. Following the sub-

band filtering, the amplitude of the 0.3–4 Hz sub-band and the

envelope of the signal of the higher frequency bands (from 4–10 Hz

to 48–200 Hz), computed using Hilbert transform, were used for

further processing [19]. The Hilbert transform is a useful tool for the

analysis of the oscillatory components of time-varying signals. It is

used to form a complex analytic signal composed of the real narrow

band time-series and the imaginary Hilbert transform of that time-

series. The magnitude of the analytic signal corresponds to the

envelope of the time-series. In theory this procedure creates less
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distortion in the estimation of the envelope than using a half-wave or

full-wave rectification. The time-varying envelopes of sub-band data

were low-pass filtered using a FIR filter with a cut-off frequency of

30 Hz to prevent aliasing during the down-sampling operation. The

signal in each sub-band was down-sampled to 100 Hz and processed

for feature extraction. For analysis of the SUA, spike sorting was

performed offline using the Offline Spike Sorter (Plexon, Inc., Dallas

TX), primarily through manual isolation of spike clusters in two or

three dimensional feature spaces.

Feature Extraction and Classification
The decoding algorithm used in this study did not use directly

the amplitude of LFP in different sub-bands, but used the

correlation of this amplitude across electrodes. In other words, the

algorithm extracted information regarding target direction from

the spatial patterns of the LFP signals. We used this feature as the

basis for our direction decoding strategy because we observed

systematic changes in the correlation between LFP channels across

target direction (see below). Consequently, we extracted features in

each sub-band using a method that exploited the difference in

correlation patterns between channels for different classes of target

directions. For this purpose, we used the Common Spatial Patterns

(CSP) algorithm [20]. The CSP method finds a set of projections

of neural data such that the amount of variance obtained by linear

combination of input channels is maximized for one class while it

is minimized for another. The spatial projections XCSP were

computed as follows:

XCSP½ n�~W T X ½n�

where X M RC represents the multi-channel sub-band data, n

represents the time sample, C is the number of channels, whereas

the columns of W M RCxC are the spatial filters. The projections

XCSP[n] correspond to a weighted linear combination of input

channels using the spatial filters W. The spatial filters W were

found by a generalized eigenvalue decomposition method:

X
1W ~(

X
1 z

X
2)WD ð2Þ

where g1 and g2 M RCxC are the spatial covariances estimated

from the recording channels for two different classes of target

direction, and D is the diagonal matrix of eigenvalues of g1. Once

the spatial projections were computed, their log-transformed

variance were calculated and served as feature vector for decoding.

The log-transformation was used to normalize the skewed

distribution of variance.

The CSP algorithm has been widely used as a feature extraction

tool in multichannel neural activity processing for binary classifi-

cation paradigms [21]. However, since we are tackling a multi-class

problem (i.e., discrimination of 8 directions), we used a redundant

classification strategy based on the fusion of the error correcting

output codes (ECOC) method [22] with the CSP algorithm. In this

scheme, we constructed several CSP filters and related linear

classifiers to discriminate target direction within every possible pair

of targets (28 contrasts: 0u vs. 45u, 0u vs. 90u, 0u vs. 135u, …, 270u vs.

315u), as well as to discriminate groups of 2–4 contiguous target

directions from the opposite group of 2–4 contiguous targets (12

contrasts: {0u,45u} vs. {180u,225u}, {45u,90u} vs. {225u,270u}, …,

{45u,90u,135u,180u} vs. {225u,270u,315u,0u}). In other words, we

created a redundant classification strategy in which every direction

was tested against every other direction and each group of two to

four neighboring directions was tested against the corresponding

diametrically opposite group. The overall system had a total of

L = 40 binary classifiers (i.e., 28+12 contrasts). For each contrast, six

features (i.e., the log-transformed variance of the projected data)

were computed using the three largest and three smallest

eigenvectors from W to construct a low dimensional feature

representation. These features were submitted to a Fisher linear

discriminant (FLD) classifier.

The classifiers output of the redundant structure was then post-

processed by ECOC to obtain a final decision. This last step was

accomplished by multiplying the vector representing the classifiers

output with the ECOC decoding matrix M of KxL with entries mi,j

M {21, 0, 1} where L is the number of binary classifiers and K is

the number of classes (i.e., 8 target directions). The index

corresponding to the minimum value of the ECOC output was

selected as the predicted direction of the test data. A schematic

diagram of the decoding algorithm is given in Fig. 1. This

algorithm has been described previously [23].

We computed the time-course of the directional decoding

performance of the LFP signal aligned to two different behavioral

events, cue onset and movement onset. For cue aligned data, we

used a 500 ms window with an initial position 500 ms before cue

onset and shifted it 13 times in 100 ms increments ending at

1200 ms after cue onset. For movement aligned data, we used a

Figure 1. Schematic of the decoding algorithm. Sub-band filtered multichannel LFP were processed using spatial filters to decode movement
target direction. Common spatial patterns (CSP) filters were constructed to contrast binary classes of target directions, as well as of groups of
directions. The main features of the projected data from each spatial filter were fed to their related Fisher linear discriminant (FLD) classifier. Finally,
the outputs from all FLDs were processed using the error correcting output codes (ECOC) for the multi-class decision.
doi:10.1371/journal.pone.0014384.g001

ð1Þ
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1000 ms time window with an initial position 1400 ms before

movement onset and shifted the window with 100 ms increments

ending at 1000 ms after movement onset. With SUA data, we

performed two types of analyses: one using the same CSP+ECOC

algorithm as described above, and one using the regularized linear

discriminant analysis (rLDA), which was shown to provide better

results than other methods, such as the population vector and

multivariate Gaussian modeling approaches [14]. In the first case,

spike counts were computed in 2 ms windows resulting in a

sampling frequency of 500 Hz like the LFP data. Then each time-

series of spiking activity was sub-band filtered and processed for

feature extraction and classification as described above. In the

second case, the rLDA was performed on the spike counts

computed in 200 ms windows, which was shifted along the time

axis in 100 ms shifts.

Statistical Analyses
We evaluated the decoding performance of the algorithm at

each time-shift using a 10610-fold cross-validation method. The

decoding performance values reported correspond to the average

over folds and repetitions of the cross-validation. Cross-validation

provides a relatively unbiased estimate of the generalization

capacity of the algorithm by separating the trials used for training

from those used for testing. In the main analysis, the data of all

three sessions were combined. However, we did also a number of

analyses were data from one or two sessions were used for

training, whereas data from the other session(s) were used for

testing. The decoding performance was evaluated in terms of

decoding power (DP) and circular correlation (rT). DP is the

ratio of correctly classified trials relative to all trials, and is the

most commonly used measure of classification accuracy.

However, DP does not take the spatial properties of direction

into account. For example, DP does not differentiate between the

cases where the system selects a direction close to the correct one

or distant from it. In addition, DP does not take into account the

circularity of direction (i.e., 0 = 360 deg). For these reasons, we

also evaluated the quality of decoding using the circular

correlation coefficient rT [24]. We compared the decoding

performance between sub-bands and between cortical areas using

a corrected t-test [25], which has been shown to have appropriate

Type I and Type II errors in the context of cross-validation

procedures [26]. All p-values less than 0.05 were considered

significant.

Results

We recorded neural activity in each of M1 and PMd during the

performance in the instructed-delay task across three recording

sessions. There were systematic changes in the time-frequency

power of the LFP signal across target direction. Examples of time-

frequency maps for LFP data from one channel are illustrated in

Fig. 2A. For the analysis, we separated the signal into five different

frequency bands: 0.3–4 Hz, 4–10 Hz, 14–22 Hz, 22–30 Hz and

48–200 Hz. Furthermore, since different channels had different

LFP patterns across direction, the correlation between signals from

different channels changed with direction, as well. An example of

average movement-onset LFP data in the 0.3–4 Hz band of two

representative channels for two target directions, 90 deg and 270

deg, is shown in Fig. 2B. The figure illustrates the difference in

correlation between signals from the two channels for these

diametrically opposite directions. This characteristic was the basis

of the single trial direction decoding strategy used in the current

study. The CSP algorithm exploits the differences in correlation

across all channels for different directions to discriminate between

them. Fig. 3A shows the average projection of LFP data in the 0.3–

4 Hz sub-band using a spatial filter that maximized the variance

for the 90 deg direction data and minimized the variance for the

270 deg direction data. The normalized variance of the projected

data is plotted across direction in Fig. 3B. It shows that the

variance of the projected data had a broad profile, which is

evidence that the patterns of correlation changed progressively

across target direction.

Directional information across frequency bands and
cortical areas

We calculated the maximum directional information that could

be extracted from the LFP signal during single trials from each

sub-band and each cortical area. The results in terms of circular

correlation between predicted and actual target direction are

illustrated in Fig. 4A. These results were obtained using data

merged from the three recording sessions and by executing a

10610-fold cross-validation procedure. There was a clear

differentiation in information content across frequency bands in

both subjects and for both cortical areas. Only two of the

frequency sub-bands provided any notable direction information:

the delta (0.3–4 Hz) and the upper gamma (48–200 Hz) bands.

For both sub-bands and for both monkeys and brain areas, the

maximum decoding accuracy was observed when the data came

from a 1 s data window that started 0–0.3 s before movement

onset. More details about the time-course of decoding accuracy

are provided below. Although both of these sub-bands yielded

circular correlations of at least 0.4, the circular correlations for

the delta sub-band were significantly higher (all pair-wise t-tests

with p,0.0001 for each combination of monkey and brain area),

reaching values greater than or equal to 0.7. As might be

expected, we obtained even better decoding accuracy (rT .0.8)

when we combined the LFP activity from the 0.3–4 Hz and 48–

200 Hz frequency bands by concatenating the features originat-

ing from these sub-bands. The latter results are illustrated by the

three rightmost bars in each sub-plot of Fig. 4A. Finally, we

combined the features of the delta and gamma bands across both

cortical areas, which improved the maximum circular correlation

between decoded and actual direction further to 0.96 and 0.93

for H464 and H564, respectively (c.f. black bars in Fig. 4A). In

terms of decoding power, the combination of features of the two

sub-bands and two cortical areas led to 93% and 84% accuracy

for subjects H464 and H564, respectively. In order to inspect the

misclassifications produced by the system, we constructed

confusion matrices of predicted versus actual target direction

associated with the maximum decoding performance. Fig. 4B

displays the results, which show that misclassified directions were

typically adjacent to the actual direction. In other words, even

when the classification failed, the predicted target direction was

close to the actual direction. This is consistent with the idea that

the patterns of correlation across channels changed progressively

across direction.

Time-course of directional information
Having identified the two sub-bands that carried directional

information, we examined the time-course of decoding accuracy

during the task for these sub-bands, their combination, and for

each subject and cortical area. The results are illustrated in Fig. 5A.

First, the figure shows that there was low-level but consistent

directional information during the instructed-delay-period in both

monkeys. Since the correlation can vary from 21 to +1, even low

level correlation but consistent over time can be useful to predict

the upcoming direction of response. To determine whether the

correlation was consistently positive during the delay period, we

Movement Direction and LFP
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analyzed the sum of the correlation values across time-shifts during

the delay period and found that it was significantly different from

zero for the 0.3–4 Hz sub-band of PMd data (t-tests with

p,0.0001 for both monkeys). This was also true, but to a lesser

extent for the same sub-band in M1 (p = 0.040 for H464 and

p,0.0001 for H564). In contrast, for the 48–200 Hz sub-band

only the data from PMd in one subject (H464) were significantly

different from zero (t-test with p,0.0001; all other t-tests with

p.0.05). These results indicate that low level but consistent target

direction information can be extracted from LFP during the

instructed-delay period. Second, with movement-onset aligned

data, we found that the accuracy of directional decoding increased

progressively and reached its highest levels when the data window

overlapped the onset of movement. In addition, the dynamics of

the time-course of decoding accuracy was different between sub-

bands and between brain areas. The difference can be better

appreciated in Fig. 5B where the rate of change of circular

correlation was plotted for each animal, sub-band and brain area.

The peak of the rate of change of correlation was significantly

higher for the 0.3–4 Hz sub-band than for the 48–200 Hz sub-

Figure 2. Modulation of LFP across target direction. (A) Time-frequency maps of LFP signals from one channel in M1 for 4 target directions
(out of 8) during the instructed-delay center-out task. The data were aligned to the onset of movement (t = 0 s). The color map represents the change
in power relative to baseline. The central arrows indicate the target direction associated with the different maps. The most reactive frequency bands
were selected from these time-frequency maps for decomposing the LFP data into sub-bands. (B) Average LFP data in the 0.3–4 Hz band of two
representative channels for the 90 deg and 270 deg target directions. The data were aligned to the onset of movement (t = 0 s). Note the difference
in correlation between channels for these two directions. This characteristic was used for target direction decoding on a single trial basis.
doi:10.1371/journal.pone.0014384.g002

Movement Direction and LFP
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band in both brain areas and for both monkeys (all t-tests with

p#0.011). In addition, the time following the peak at which the

rate of change fell below 50% of peak amplitude occurred

significantly earlier in PMd than in M1 (t-tests; p = 0.007 for

H464, and p = 0.028 for H564). In summary, we would like to

stress two general observations about these dynamics. First, the

increase in decoding accuracy with time (using movement-onset

aligned data) was step-like for the 0.3–4 Hz band, whereas it was

ramp-like for the 48–200 Hz band in both brain areas. Second,

the peak of the rate of change in decoding accuracy occurred

earlier in PMd than in M1, that is, the decoding accuracy leveled-

off earlier in PMd than in M1.

Figure 3. Projected data. (A) Projections of 0.3–4 Hz LFP data from all channels using a spatial filter tuned to maximize the variance for the 90 deg
direction and minimize the variance for the 270 deg direction. The projections were ordered along the ordinate according to target direction. The
vertical dashed line indicates movement onset. (B) Variance of the spatial projection for each target direction in Fig. 3A. The variance was normalized
to the maximum value. Note that the variance was maximum for 90 deg and minimum for 270 deg by design of the spatial filter, and that it varied
progressively across direction. This characteristic indicates that LFP correlation structure across channels changed progressively with direction.
doi:10.1371/journal.pone.0014384.g003

Figure 4. Decoding accuracy and confusion matrices. (A) Maximum circular correlation between predicted and actual target direction for each
sub-band, brain area and subject. The results correspond to the cross-validated maximum correlation obtained during a trial. (B) Confusion matrices
of decoding results using the 0.3–4 Hz and 48–200 Hz frequency bands combination from M1 and PMd data for each subject. A perfect prediction
would result in all classifications being along the diagonal. Note that misclassifications occurred typically in neighboring directions evidencing that
LFP for neighboring directions had similar correlation structures.
doi:10.1371/journal.pone.0014384.g004
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Next, we examined the time-course of decoding by combining

data from the two sub-bands and the two brain areas. The results

of this analysis are plotted in Fig. 5C. As expected from the results

described above, we found that during the delay period, the

correlation between predicted and actual target direction, though

relatively low, was consistently positive. The correlation summed

across time-shifts during this period was significantly different from

zero (t-tests with p,0.0001 for both monkeys). In addition, the

correlation during the peri-movement period reached very high

levels (rT .0.90) for both animals.

Decoding stability
An important point of the current study was to test the stability

of the LFP-based decoding across recording sessions. The fact that

a high level of decoding accuracy was obtained when the data

were combined over a period of eight days (Fig. 4A) supports the

assumption that LFP data had consistent spatio-temporal

characteristics across that period of time. As an additional test of

signal stability, we performed decoding analyses using data from

one or two sessions for training and used the data from the other

session(s) for testing. The results are presented in Table 1. As it

could be expected, there was a noticeable decrease in decoding

accuracy when the training of the algorithm was based on data

from a single session. However, there was no systematic effect on

the results whether the data for training were from the first, second

or last session. In addition, when the data of two sessions were used

for training, then there was little or no decrease in decoding

accuracy compared to the case where all sessions were combined.

These results indicate that the characteristics of LFP were

relatively stable across the sessions, and that using data across

multiple sessions provides a more robust extraction of the

consistent patterns.

Directional information in LFP and SUA
In order to compare the amount of direction-related informa-

tion in LFP and SUA, we decoded movement target direction for

each type of signal using the CSP+ECOC algorithm. These

analyses were performed for the two sessions in which both types

of data were available (sessions 2 and 3). In addition, to prevent

potential ambiguity about the identity of SUA across sessions, we

performed the SUA analysis in each session separately and

compared it to the LFP data in the same session. The number of

isolated units for subjects H464 and H564 was 27 and 56 in session

2 and 24 and 58 in session 3, respectively. The best decoding

power with SUA was obtained using the 0.3–4 Hz sub-band,

which results are indicated in Table 2. The results show that

Figure 5. Temporal evolution of decoding accuracy. (A) Time-varying circular correlation between predicted and actual target direction for the
two most informative sub-bands, and for each brain area and subject. The results at each time point were obtained using data from a time-window
(500 ms for the cue and 1000 ms for movement onset aligned data, respectively) that preceded that time point. (B) Time-varying rate of change of
circular correlation between predicted and actual target direction. Same conventions as in A. (C) Time-varying circular correlation between predicted
and actual target direction using combined features obtained with the delta and upper gamma sub-bands from PMd and M1 for each subject. The
thinner lines indicate the 95% confidence interval of the mean computed on the basis of the corrected t-test [25; 26].
doi:10.1371/journal.pone.0014384.g005
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decoding accuracy using LFP was generally slightly better than

using SUA for both subjects in both sessions. These results can be

explained in part by the larger number of LFP channels available

than SUA. The effect of number of channels on decoding accuracy

is examined in the next section. In addition, there was a clear drop

in decoding accuracy for subject H564 in the last session due to the

smaller number of trials available in that session for training the

classification system. A large number of training trials is needed to

accurately estimate the spatial covariance matrices and robustly

extract the related filters. The effect of number of trials available

for training the decoder is examined more in details further below.

Finally, we investigated the accuracy of directional decoding with

SUA using rLDA [14] to compare it with the accuracy obtained

with the CSP+ECOC algorithm. The decoding accuracy in terms

of circular correlation with SUA and using rLDA was 0.82 and

0.92 for monkey H464 in sessions 2 and 3, respectively; and 0.65

and 0.59 for monkey H564 in sessions 2 an 3, respectively.

Consequently, the CSP+ECOC algorithm provided generally a

better decoding of SUA compared to that of rLDA.

Directional information as a function of number of
channels

Decoding accuracy is dependent, among other things, on the

number of data channels available. Therefore, in order to assess

the decoding accuracy as a function of number of channels, we

selected subsets of different sizes from the set of channels available

for each monkey (i.e., 61 channels for H464 and 116 channels for

H564). For each subset, the channels were randomly selected with

replacement and a 10610-fold cross-validation procedure was

performed. The decoding accuracy in terms of circular correlation

is shown in Fig. 6A. We observed a similar relation between

number of channels and decoding accuracy in both subjects. This

relation was characterized by a rapid increase in decoding

accuracy when the number of channels increased from 5 to about

30. However, after 30 channels the classification performance

increased much more slowly.

Directional information as a function of number of trials
Finally, the more trials are available, the better the statistics

estimates used for decoding. For this reason, we assessed the

decoding accuracy as a function of number of trials available for

training the decoder. In this analysis, we selected the data of

subject H564 in session 2. Subsets with different number of trials

were formed and the decoding accuracy was estimated using the

10610-fold cross-validation procedure. In order to prevent bias

towards a particular direction in these subsets, the number of trials

was constrained to be the same across direction. The decoding

accuracy in terms of circular correlation is shown in Fig. 6B. As

expected, the decoding accuracy increased with number of trials

used for training the decoder. It increased mainly for subsets up to

128 trials (i.e., 16 trials per direction) and leveled off thereafter.

Benchmark for real-time processing
We tested whether our approach could be practical for real-time

applications by implementing the algorithm described above using

Matlab (MathWorks, Natick MA) on a 2.2 GHz CPU personal

computer. The benchmark was executed using 128 channels of

simulated LFP data sampled at 1 kHz. In the preprocessing step,

the streaming input LFP data were filtered in the delta (0.3–4 Hz)

and gamma (48–200 Hz) frequency bands. The envelope of the

gamma component was computed using the Hilbert transform as

described in the methods section. In the following step, the

preprocessed data in both bands were low-pass filtered and down-

sampled to 100 samples per second and processed by the

CSP+ECOC algorithm for feature extraction and classification.

Since the final sampling frequency was 100 Hz, each decision

update should be given in less than 10 ms to provide a real-time

feedback. We observed that with our current hardware setup, the

preprocessing step took 5.6 ms, whereas the CSP+ECOC post-

processing step was accomplished in 2.6 ms resulting in a total

response time of about 7.3 ms. This result shows that the

algorithm can be executed on traditional computer architectures

in real-time.

Table 2. Decoding accuracy (rT) with SUA and LFP in single sessions.

Session

2 3

Subject SUA LFP #SUA #LFP #Trials SUA LFP #SUA #LFP #Trials

H464 0.92 0.98 27 61 263 0.91 0.98 24 61 326

H564 0.80 0.88 56 116 206 0.70 0.63 58 116 103

In all cases the decoding was performed using the CSP+ECOC algorithm.
doi:10.1371/journal.pone.0014384.t002

Table 1. Decoding accuracy (DP: decoding power; rT: circular correlation) across recording sessions.

Training session(s)RTesting sessions(s)

1R2,3 2R1,3 3R1,2 1,2R3 1,3R2 2,3R1

Subject DP rT DP rT DP rT DP rT DP rT DP rT

H464 0.36 0.27 0.71 0.76 0.64 0.68 0.87 0.91 0.92 0.95 0.60 0.62

H564 0.68 0.80 0.56 0.67 0.46 0.49 0.85 0.91 0.83 0.90 0.65 0.73

Data from the training session(s) were used to train the decoder, whereas data from the test session(s) were used to examine the decoding accuracy. There was a gap of
7 days between session 1 and 2, whereas session 2 and 3 took place in consecutive days.
doi:10.1371/journal.pone.0014384.t001
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For applications where the decoding is executed on the entire

reach, as we did in this study, a frequent update rate is not

necessary. On the other hand for trajectory decoding applications

a fast update rate is indispensible. In this latter case, the time

window analyzed has to be short as well to extract local features of

the time-varying movement parameters. However, a short time

window might produce a poor estimation of the CSP features. In

this case, recursive methods, which can update adaptively the CSP

features on a sample basis, might be needed [27].

Discussion

We believe that the results we presented make a number of

important points in regard to the decoding of directional

information from LFP signals. First, it is possible to obtain high

fidelity decoding of movement target direction over time from the

patterns of chronically recorded multi-channel LFP; second, the

direction of the intended movement can be extracted during a delay

period before movement begins; third, the dynamics of direction

decoding are different across sub-bands within the LFP signal;

fourth, signals from the primary motor cortex and dorsal premotor

cortex have similar decoding power though the dynamics are

different; and finally the LFP signal is relatively stable over time.

Decoding power and the spatial properties of the LFP
signal

We have shown that it is possible to decode movement target

direction with high accuracy by exploiting the spatial patterns of

LFP recorded from M1 and PMd. As mentioned above, others

have already used LFP signals to decode the direction of

movement [14–17]. However, high levels of decoding power were

achieved only when data channels were combined across

recording sessions [14,15], which is not practical for real-time

BMI applications. We believe that the high decoding ability we

demonstrated was related to the analytical approach which was

based on the assumption that the LFP signal sampled from

regularly placed electrodes on the cortical surface has a consistent

spatial organization. The spatial organization of the LFP signal

was supported by other aspects of our results in addition to the

high decoding power. For example, we observed that when

misclassifications occurred these were generally in favor of

neighboring directions (Fig. 4B), which is understandable if

neighboring directions are associated with similar structures in

the LFP spatial patterns. In addition, in other work, we have

shown that grouping LFP data from neighboring directions to

train spatial filters and classifiers provided better classification

results than when directions were treated as independent [23].

Since the observation that many neurons in the motor cortex are

tuned to the direction of movement in space and that individual

neurons have different preferred directions of movement [8], there has

been much speculation as to whether the direction properties of single

neurons in the motor cortex are organized in a regular topographic

pattern similar to the columnar organization of orientation selectivity

and ocular dominance in visual cortex [28]. There is now evidence

from single cells recording that their preferred movement direction

may be organized in a columnar network [29–31]. Although our

study does not address this question directly, it provides support for the

concept of spatial organization of movement-related neuronal

properties. Notwithstanding, it is not yet clear how the directional

properties of single neurons and LFP signals might relate, which is a

question beyond the scope of the current experiment.

Stability of LFP in time
We were able to address two aspects of the relation between the

LFP signals and time. The first was whether the LFP signal yielded

stable decoding of the parameter of interest over the three

recording sessions which spanned a period of eight days. We

obtained very high decoding accuracy (Figs. 4A and 5A) when the

data of all the sessions were combined, which suggests that there

was a consistent pattern across channels during these sessions that

could be used to decode movement target direction. The second

aspect of stability over time was whether patterns of neural activity

in one or two experimental sessions could be used to train the

algorithm and predict target direction using the neural patterns

from one or more other sessions. To this end, we performed

decoding analyses in which we trained the decoding algorithm

using data from one or more experimental sessions and then

decoded data from one or more other sessions (Table 1). The two

main aspects of the results were that which session data were used

for training the decoder did not have a clear systematic effect on

decoding accuracy (i.e., the worst performance was found when

session 1 was used for training with monkey H464, whereas it was

when session 3 was used for training with monkey H564; on the

other hand, the best performance was obtained when sessions 1

and 3 were used for training with monkey H464 and sessions 1

and 2 with monkey H564); and that using the data of two or three

Figure 6. Decoding accuracy varies with number of channels and trials. (A) Circular correlation between predicted and actual target
direction computed as a function of number of channels used for decoding. (B) Circular correlation between predicted and actual target direction
computed as a function of number of trials used for training the decoding algorithm (data of H564 in session 2).
doi:10.1371/journal.pone.0014384.g006
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sessions for training increased noticeably the decoding accuracy

over using the data of a single session. These results support the

hypothesis that the characteristics of LFP were relatively stable

across the sessions, and that a robust extraction of spatial patterns

may require more than one session. Overall, these results suggest

that although there are common spatial patterns that appear to be

stable over time, there is in addition a non-stationary process in the

LFP signal that needs to be further characterized and may pose a

challenge to decoding algorithms.

SUA and LFP decoding
Decoding of movement parameters based using single-unit

activity is currently regarded as the gold-standard for BMI

applications. The data from single units recording have the

advantage of fine spatio-temporal precision, high information

content and a vast literature on their relation to various aspects of

behavior. However, a major difficulty in the use of SUA is the

difficulty in isolating the same neurons over time [7,10]. In terms

of signal, it was shown that good neuronal signals can be recorded

from chronic arrays for, at least, 1.5 years [32,33]. However, an

important question is whether the same neurons can be recorded

over multiples sessions. Studies that have addressed this question

by analyzing the stability of SUA over time have found that less

than half of the originally isolated neurons were still available after

1–2 weeks [34,35]. For these reasons, in some studies only a small

subset of stable SUA was used for evaluating the decoding

accuracy over a two week period [36,37]. In other words, these

studies discarded a large amount of recorded SUA, because they

were not consistent across sessions. In contrast to SUA, LFP is

considered to be a potentially more stable signal. In addition, it

was shown that LFP can be used to decode movement parameters

such as direction, velocity and position with accuracy similar to

that of SUA [14]. The current study shows that movement target

direction can be decoded with high accuracy using the spatial

patterns of LFP. However, pairs of LFP channels tend to be more

correlated than SUA or MUA channels [38] which means that

increasing the number of LFP channels typically increases

redundancy. This is consistent with the negatively accelerated

gain in decoding accuracy with number of channels (Fig. 6A), that

is, the slope of the relation between decoding accuracy and

number of channels was steeper with fewer than 30 channels and

shallower afterwards. These results underscore the difficulty with

estimating decoding performance when channels recorded across

different sessions are added together as if they were independent

channels [14,38]. This practice is likely to overestimate the actual

decoding performance of simultaneously recorded LFP channels.

In addition, we show that, generally, better direction decoding

was obtained with LFP than with SUA. This result may be

accounted for in part by the fact that there were fewer SUA

available than LFP channels. Indeed, when the number of SUA

and LFP channels are similar, SUA yield better decoding results

than LFP [38]. Our study supports these results to some extent.

For example, when we consider a similar number of LFP channels

(i.e., 30 and 60 for H464 and H564, respectively) and SUA (i.e., 27

and 56 for H464 and H564, respectively), then the decoding

results were 0.82 and 0.83 with LFP and 0.92 and 0.75 with SUA

for H464 and H564, respectively. In summary, with a comparable

number of channels, SUA provided better decoding results than

LFP for subject H464, whereas LFP provided better decoding than

SUA for subject H564. In conclusion, the superiority of the LFP

signal is predicated upon having an adequate amount of data; if

the data are limited, as can be seen in one case in Table 2, then the

performance of the SUA may be better. However, since LFP

signals represent the summed synaptic activity over a volume of

neural tissue, it is expected that typically more channels with stable

LFP recordings be available than the number of isolated SUA.

Decoding in M1 and PMd
The primary motor cortex is the most important brain area for

the control of voluntary movements [39]. We have detailed

information about the encoding of motor parameters in motor

cortex and neural data from this structure have been the focus of the

majority of decoding studies that are relevant for BMI applications

[1,3–7]. However, for practical reasons it would be unwise to focus

exclusively on the primary motor cortex as the location from which

signals might be decoded. The area of motor cortex that is readily

accessible on the cortical surface is relatively small and there is a

variety of diseases in which this structure may be damaged making it

unusable. The premotor areas on both the lateral and medial

surface of the frontal lobe contribute to the planning of movements,

the integration of somatosensory and visual information essential for

movement, and to the production of movement sequences [40–42].

In addition, elemental parameters of movement, particularly

direction, are typically encoded in premotor areas, such as the

PMd, well in advance of the movement itself and before the

appearance of activity in M1 [43,44]. The ability to decode in

advance information about an upcoming movement is essential if

BMI applications are to improve. In the current experiment, we

were able to detect a small but significant signal related to the

upcoming movement target direction during a delay period almost a

second before the subject moved. In addition, we found that the

dynamics of change in neural signal were different in PMd

compared to M1 just before and during movement. Finally, the

overall decoding accuracy though somewhat lower in PMd was still

comparable to that of M1.

Conclusions
The results demonstrate that the spatial patterns of LFP signals

can be used to decode movement target direction. This finding

suggests that parameters of movement, such as target direction,

have a stable spatial pattern within primary motor and dorsal

premotor cortex, which may be used for brain-machine interfaces.
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