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Abstract— We introduce a subspace learning approach for
multi-channel Local Field Potentials (LFP), and demonstrate
its application in movement direction decoding for 8 directions
movement. We show that the subspace learning method can
effectively address the issue of signal instability across recording
sessions by extracting recurrent features from the data. We
present results for movement direction decoding, where we
trained on two recording sessions, and evaluated decoding
performance on a third session. We combine our method with
a classifier based on Error-Correcting Output Codes (ECOC)
and Common Spatial Patterns (CSP) and found improvement
in Decoding Power (DP) from 76% to 88% for a subject known
to have strong inter-session variability. Furthermore, we saw
an increase from 86% to 90% DP with another subject which
exhibited significantly less variability.

I. INTRODUCTION

Different types of signals have been used in brain studies
as candidate for brain machine interface (BMI) design. The
small extracellular potentials generated by neurons in the
cortical layers can be inferred from electroencephalogram
(EEG) signals acquired non-invasively on the scalp surface,
electrocorticogram (ECoG) acquired with electrodes placed
on the surface of the brain, single neuron activity (SUA)
and local field potential (LFP) recorded with implantable
electrodes. In general, the more invasive techniques, such
as SUA or LFP signals, provide higher spatial resolution
and frequency bandwidth than the less invasive methods.
Spatial resolution can be an important factor in brain studies
and BMI systems. For example, a subject using a BMI
system based on EEG with relatively poor spatial resolution
will need to synchronously modulate a large population of
neurons to successfully use the system. Many techniques
have been proposed in the literature to study brain field
potential signals but all suffer from the same problem that
their performance do not generalize well across recording
sessions. Our primary goal here is to introduce a novel
technique that address the instability and time variability
challenges associated with LFP signals recorded on different
days. The potential is illustrated in the context of movement
direction decoding, which is of great interest for Neural
Prosthetics applications.

Signal instability and time variability are due to the acute
and chronic responses of the brain tissue after implantation,
brain plasticity with BMI systems as the subject learns how
to optimize system performance, physiological changes in a
subject due to prior activity or rest periods, or context and
environmental conditions. Indeed, one of the most critical
challenges in processing SUA and LFP signals in BMI

applications is the change in the characteristics if such
signals are collected in different sessions separated by a
week or more. It is our experience that currently prevalent
methods such as Principal Component Analysis (PCA) and
Independent Component Analysis (ICA), fail to capture the
above mentioned time variability and instabilities. In this
work, we approach the problem by seeking the subspaces
where the recurrent and stable features of the signals live.
Once the recurrent subspaces can be identified, the signals
can be factored into a projection onto the recurrent subspace
and an error term which would represent the variability.
Although such a decomposition can be used to several ends,
in this paper we focus on how it can improve classification
in movement direction decoding using LFP.

We recently introduced an Orthogonal Subspace Pursuit
(OSP) algorithm for learning sparse adaptive representations
and demonstrated its potential in the context of Blind Source
Separation (BSS) [1]. The foundation of the OSP algorithm
is a subspace clustering method that assumes signals do
not group around clusters of homogeneous dimension. For
example, in a 3 dimension space, data can cluster around
various lines (1-D) or planes (2-D), and our proposed method
can extract the subspaces of different dimensions, while a k-
means approach would force feed the data into homogeneous
vectors clusters. In this work, we propose using the OSP
to learn recurrent features of LFP data. We use a mixing
model for the multi-channel data, similar to that of BSS, to
motivate factoring the data into a recurrent subspace for the
signals and a variability term. Although, the results presented
are for a specific classifier, the subspace decomposition
method described can be combined with any other classifier.
We demonstrate decoding power improvement from 76% to
88% in the context of movement direction decoding across
recording sessions for a particularly challenging subject.

The remainder of the paper is organized as follows. In
section II, we introduce some preliminary concepts regarding
formating LFP data and movement direction decoding. In
section III, we describe the sparse coding approach to
learning subspaces. In section IV, we describe in detail
how the subspaces can be learned from multi-channel LFP
data. In section V, we illustrate the impact of subspace
decomposition on decoding movement directions using LFP
data. In section VI, we summarize our results.

II. PRELIMINARIES

The LFP data discussed in this paper is arranged in 3 ses-
sions, where session 2 was recorded one week after session
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1, and session 3 was recorded one day after session 2. In each
session, several multi-channels LFP trials were recorded,
such that each trial correspond to a specific directional
movement. Data for eight directions, evenly spaced between
00 and 3150, were recorded in each session. The goal of the
movement direction decoding is to estimate which movement
direction is associated with a particular trial, and is typically
approached by a supervised learning method, such as the
classifier presented in [2]. The accuracy of the decoding
is defined in terms of Decoding Power (DP), which is the
ratio of correctly classified directions to the total number of
directions. It should to be noted that random classification
yields a DP of 12.5%. In the remainder of this section,
we describe the mixing system model that motivates the
pursuit of recurrent subspaces and the premise for subspace
decomposition.

Let N be the number of channels in an LFP recording trial,
and T be the time duration of the recording, then the ith trial,
is a matrix, Xi, of dimension N × T . Each session, X, is a
collection of K trials such that X = {Xi}Ki=1. We assume that
each trial Xi can be modeled as a mixing system, such that
Xi = Hi�S, where S are the localized sources of the signals
of interest (underlying neurons), and Hi is the mixing matrix
which could be instantaneous, in which case the � operator
is a simple product, or Hi could be mixing filters, and the
� operator is a convolution. Such a model, commonly used
in blind source separation, [3], [4], can help us reformulate
our approach to classification of multi-channel LFP data. In
this model, the spatial diversity of the observation is capture
in the mixing matrix/filter, Hi, while the underlying source
characteristics is represented by matrix, S.

We assume that for a specific type of physiological stimu-
lus, some sources exhibit a particular behavior which should
be recurrent across trials, and even recording sessions, while
the observed signal instabilities are due of the state of the
subject, will be less structured. By modeling the system
in a mixing fashion, we can effectively break down the
classification problem as 1) finding a classifier that captures
the diversity of mixing matrix/filter 2) factor the sources as
a recurrent subspace, capturing the features of interest, and
a non-recurring one which represents the instabilities. The
classifier used in this paper applies a redundant hierarchical
classification strategy using Error Correction Output Codes
(ECOC) [5] and linear discriminant classifiers to find a set of
Common Spatial Patterns (CSP) [6] to discriminate between
directions. The full details of the classifier and its merit can
be found in [2]. We assume the signal of interest, S, can
be factored out as a recurrent, SR and non-recurrent, SNR,
portions, such that,

Xi = Hi � (SR + SNR). (1)

By projecting the signal onto the subspace where SR lives,
we can improve the performance of our classifier.

III. LEARNING SUBSPACES USING OSP

The Orthogonal Subspace Pursuit (OSP) algorithm [1] is
a method for extracting inherent subspaces from data, and

was originally proposed to learn sparse signal representation.
The method consist of a sparse coding stage, followed by a
subspace clustering step and an optional optimization step.
The OSP software is available from the authors. Below, we
highlight the essence of each step.

A. Sparse Coding: Orthogonal Least Square

Let vector y, be a vector of dimension N×1, and let D be
a dictionary, which consists of a set of potentially overcom-
plete basis vectors. A sparse decomposition algorithm seeks
to approximate y in terms of a minimum number of columns
of D, where sparsity is referred to the number of vector from
D needed to approximate y. The OLS algorithm [7] involves
two steps, the first involves finding the most correlated
atom (vector) from the dictionary, and the second involves a
dictionary decorrelation step where the atoms that were not
selected are decorrelated from previously chosen atoms. The
OLS iteratively chooses vectors from the dictionary until it
either has enough vectors to approximate y or it has reached
a user defined maximum number of vectors.

B. Orthogonal Subspace Pursuit (OSP)

Given a set of K observation vectors each of dimension
T × 1, we normalize each vector to unit l2 norm and the
resulting data is our training set, Y = {yi}Ki=1. We initialize
the dictionary as D0 as the data Y . The algorithm has
two stages, first we identify a subspace from the training
data, and second we find all the training data that lives
on this subspace and remove them from Y before looking
for the next subspace. The OLS is used to find the sparse
representation of the vectors. A summary of the algorithm is
given in figure 1.
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Fig. 1. Overview of the Orthogonal Subspace Pursuit algorithm

C. Subspace Optimization

Given a training set, Y , of K elements, and M subspaces,
{Ai}Mi=1, the subspace optimization step will first prune the
number of subspaces to a user defined maximum, of λmax,
then re-optimize the subspace by iteratively re-clustering the
vectors from Y over the retained subspaces. The re-clustering
is done such that Y is partitioned into clusters of vectors
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Fig. 2. Formatting Multi-channel data for subspace learning

closest to each subspace, and the subspaces are updated by
doing SVD on the clustered data.

IV. LEARNING RECURRENT SUBSPACES FROM LFP

We now describe how the subspaces are learned from
multi-channel LFP data. Since our classifier is already de-
signed to learn spatial patterns, we can focus on learning
the underlying characteristics of the source signals without
spatial restrictions. Hence, for our purposes, we treat each
channel as a separate observation. Each recording session
had about 200 trials with 128 channels, which represents an
initial training set of about 50,000 vectors. To be computa-
tionally tractable, we select a random subset of trials. We first
find an initial set of subspaces by applying the OSP to the
subset of trials as illustrated in fig. 2, followed by a subspace
pruning and optimization to remove remove subspace with
very small cluster size. The procedure for each direction is
as follows,

1) Select 20 random trials from the training set, {Xi}20i=1

2) Transpose and concatenate each trial, such that Y =
[XT

1 X
T
2 . . . X

T
20]

3) Apply the OSP algorithm to Y
a) Normalize every column of Y ,
b) Find an initial set of subspaces, {Ai}Ki=1

4) Retain a maximum of λmax (typically 20) subspaces
and optimize using the method of section III-C

5) Retain the 3 subspaces with largest cluster sizes
6) Repeat steps 1-4 for next direction
We found that for each direction, most of the training set

clusters around 2 to 3 subspaces of less than 10 vectors each,
and it is sufficient to retain only these.

A. Condensing Subspaces

We use the notion of subspace angle as described in algo-
rithm 12.4.3 from [8] to condense the 2-3 subspaces found
for each direction into a single subspace. Given two matrices,
A and B, of dimension N x q and N x p respectively,
using the subspace angle approach, we can find two sets of
vectors, U = {ui}mi=1 and V = {vi}mi=1, of dimension equal
to the m = minimum(p,q), that are known as the principal
vectors of each subspace. Using the principal angles between

vectors, we can decompose each subspace as a combination
of a common subspace, and a complement. The condensed
subspace is the union of the common subspace, and the
complement from each subspace. This process allows us to
account for signals that draws features from more than one
subspace, in a computationally efficient manner.

B. Recurrence

An important parameter in finding the recurrent features
is the approximation error used in the learning algorithm.
Unlike applications such as speech or image processing,
we do not seek to approximate the full signal. Instead,
we purposely relax the approximation error to about 0.31
error norm, in the sparse coding stage, so we can capture
only the most salient and recurrent features. These features
are recurrent within the sessions they were trained on but
can be made more robust and generalizable by considering
subspaces intersection across sessions, similar to section IV-
A. This extension requires more sessions for validation and
is currently being studied.

V. CLASSIFICATION USING SUBSPACE PROJECTION
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Fig. 3. Evaluating the movement direction of a trial using proposed
combination of classifier and subspaces. Here the same classifier was used
for all the subspaces

A. Data Acquisition and Pre-Processing

Two male rhesus monkeys were trained to perform point
to point movement tasks on a horizontal manipulandum.
Given a cue, the subject executed joystick movements to
reach one of the eight targets. Each trial proceeded in the
following way. The subject placed the joystick in the center
of the manipulandum for a period of 800 ms. One of the
eight peripheral targets was displayed for about 500-700
ms serving as a cue for the subject. Following a pause of
about 1000 ms, the target reappeared. The subject moves
the joystick and holds it at the target for about 800 ms.
The order of the directions was pseudo-random and was
performed in sets of eight. Our data was low passed to [0.5
Hz to 4 Hz] as this was reported to be the discriminating
sub-band across all the eight directions[2]. The protocol for
animal experimentation was approved by the Institutional
Animal Care and Use Committee of the Veterans Affairs
Medical Center (Minneapolis). The guidelines of “Public
Health Service Policy on Humane Care: Use of Laboratory
Animals by Awardee Institutions” and the ”NIH Principles
for Use of Animals” were followed.
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B. Movement Decoding Using Subspace Projections

An overview of a classification system using subspace
projections is given in figure 3. Let Ak, be the kth subspace
of dimension N ×M such that the M column vectors span
the subspace Ak. Ck is the kth classifier associated with
projection onto the kth subspace. Tk is the kth row of
the lookup table, T , and it filters out the directions which
cannot be represented by the kth subspace. Each test trial
is first, separately, projected onto each subspace, and then
run through a classifier, which will decide which direction it
corresponds to. The decision is then matched to the lookup
table which retains a decision only if that direction can
be represented by the corresponding subspace. Finally, a
decision rule is applied to mesh the combined decisions from
each subspace projection.

C. Masking using Lookup-Table

The purpose of the lookup-table is to identify the best
subspace for a particular direction. If, for example, we know
that subspace, A1 is the best subspace for the first direction
(say 0o), then we set T (1, 1) = 1 for direction 0o and
T (k, 1) = 0 for all other subspaces. We select only one
subspace per direction, so there are only 8 non-zero entries
in the matrix, T . The best subspace for a direction is the one
that results in the highest DP for that direction while keeping
a low false positive. The lookup table can be estimated by
cross-validation from the training data.

D. Decision Rule

Ideally, for each test trial, there would be only a single
non-zero decision, and that decision would be retained as
the decoded direction. However, in practice, about 20 to
30% of the time, we get ambiguous decisions, where more
than one subspace will give a decision. In these cases, we
need to apply a more elaborate decision rule to resolve the
confusion. In our case, the CSP+ECOC classifier outputs a
cost associated with each decision and the lower the cost, the
more confident the decision. We use a hierarchical decision
process, where we first evaluate how many subspaces output
non-zero decisions after masking by the look-up table. If
there is only one decision, we retain that decision as the
final decision. In the event of more than one decision, we
resolve the ambiguity by retaining only the decision with the
lowest classifier cost.

E. Experiment and Results

We now present results for two subjects, H.464 and H.564.
It has been previously reported [2] that H.464 is a far more
stable subject than H.564 and as such, its initial DP when
using CSP + ECOC is much better than for H.564. In our
experiment, we used data from session 1 and 2 for training,
and did the validation on session 3. Using the procedure
of section IV, we learned 3 subspaces per direction for
session 1 and 2, for a total of 48 subspaces. Furthermore,
we computed the condensed subspaces for each direction,
for a total of 16 condensed for both sessions. Of the 64
subspaces, we retained only the 8 best subspaces for the

classification. In order to fairly compare the confidence of
the decisions among subspaces, we used the same classifier,
labeled C0, which is uses CSP and ECOC and was trained
on the trials from session 1 and 2 without projections. As
we can see from the table I, using the subspace projection
approach we get an improvement of 12% with the less
stable subject, H.564, and an improvement of 4% with
more stable H.464, to achieve close to 90% DP with both
subjects in the tough scenario of inter-session experiments.
Ideally, with enough training sessions available, we should
find intersections between subspaces from different sessions
to get a truly recurrent inter-session subspace. Clearly, the
intersection should be done with the condensed subspaces to
reduce complexity.

TABLE I
DECODING POWER COMPARISON FOR TWO SUBJECTS

Subject CSP+ECOC CSP+ECOC+Subspaces
H.564 76% 88%
H.464 86% 90%

VI. CONCLUSION

We introduced a subspace approach for learning recurrent
features from multi-channel LFP data, and showed its po-
tential in movement direction decoding. We motivated the
pursuit of recurrent subspaces to model the stable behav-
ior of the sources over time. Furthermore, we proposed
a classification methodology that uses multiple subspace
projections while allowing us to leverage state-of-the-art
classifiers to capture the spatial diversity of the mixing. We
find DP improvement from 76% to 88% for subject H.564
under the challenging condition of inter-session training. We
are currently investigating an approach for finding subspace
intersection across sessions to improve the robustness of our
method.
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