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ABSTRACT
A major drawback of using Local Field Potentials (LFP)

for Brain Computer Interface (BCI) is their inherent insta-
bility and non-stationarity. Specifically, even when a well-
trained subject performs the same task over a period of
time, the neural data observed are unstable. To overcome
this problem in decoding movement direction, this paper
proposes the use of qualitative information in the form of
spatial patterns of inter-channel ranking of multi-channel
LFP recordings. The quality of the decoding was further
refined by concentrating on the statistical distributions of
the top powered channels. Decoding of movement direction
was performed using Support Vector Machines (SVM) to
construct decoders, instead of the traditional spatial patterns.
Our algorithm provides a decoding power of up to 74%
on average over a period of two weeks, compared with
the state-of-the-art methods in the literature that yield only
33%. Furthermore, it provides 62.5% direction decoding in
novel motor environments, compared with 29.5% with con-
ventional methods. Finally, a comparison with the traditional
methods and other surveyed literature is presented.

Index Terms— Brain Computer Interface, Local Field
Potentials, Support Vector Machines.

I. INTRODUCTION

The main problem with using invasive neural-recording
modalities is their instability and non-stationarity over time
[1]. Only a fraction of the single units have stable activity
over a period of two weeks [2]. However, most pattern-
recognition algorithms rely on stationary features that show
little or no change over time. Hence these characteristics (in-
stability and non-stationarity) pose problems in developing
robust decoders that can be trained only once. Many studies
have used a cross-validation setting where the training and
testing sets are re-sampled from a huge pool of data and the
average performance is reported [3], [4]. In others, daily re-
training is needed to improve the performance of the same
task [5].

This paper will focus on the following issues: 1) Overcom-

ing the instability and non-stationarity concerns of the data,
2) Providing stable decoders over two week time frame, and
3) Studying the spatial and temporal organization of the mo-
tor cortex when performing motor tasks. The inherent non-
stationarity of the LFP data can be tackled by transforming
the data into a pseudo-stationary space in the form of relative
inter-channel rankings. The main contribution of this paper
lies in developing robust features from the non-stationary
neural data and using them to build consistent decoders,
thereby eliminating the need for re-training. The novelty
lies in first extracting the spatial distribution of the high
energy channels over time and using a non-linear decoder to
decode the direction. Using this methodology, the movement
directions were decoded at an average of 74% over a period
of two weeks. Similar robust performance was observed
when this algorithm was tested across sessions with varying
external field forces.

The remainder of the paper is organized as follows:
Section II discusses the experiment and the data acquisition;
Section III describes the methods used for analysis, and is
followed by results and discussion in Section IV; and finally
concluding remarks are presented in Section V.

II. DATA

Two male rhesus monkeys (H464, H564) were trained
to perform the center-out-target-reach task with a robotic
manipulandum. The subjects were implanted in the primary
and the dorsal pre-motor areas, with two 64-grid Utah
micro-electrode arrays. The experimental paradigm and the
preprocessing are the same as in [6]. For one subject (H464),
the initial sessions were performed over a two week period
with the following chronology; session 1 on day 1, sessions 2
and 3 on days 8 and 9 (a week from session 1) and sessions
4 and 5 on days 13 and 14 (two weeks from session 1)
respectively. The following sessions were performed with
varying external field forces against movement, such as
Viscous Clock wise (VCW), Viscous Counter Clock wise
(VCCW), Stiffness Clock Wise (SCW) and No Force (NF).
The use of external forces aids in investigating the changes
in the neural patterns in novel environments. All the trials
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Fig. 1: Time-line of the neural data to be used in the analysis.

in a particular session were performed in a randomized
fashion. Figure 1 shows the pseudo-random time spent by
the subject at each cue of a single trial. At the successful
completion of such a trial subjects were given a juice reward
and only these trials were included in the analysis. The
number of successful trials varied from 10 per direction in
the least successful session to 35 in the most successful one.
During the preprocessing stage time-frequency analysis and
histograms were used to remove channels that had low Signal
to Noise Ratio (SNR) or high baseline wander, thus retaining
61 channels for H464 and 98 for H564.

III. FEATURE GENERATION

This section discusses the feature generation and decod-
ing algorithms used in this paper. The data in the LFP
recordings consists of several trials, each consisting of N
simultaneously recorded channels. The neural field potential
in each channel is sampled T times. Thus, each trial of the
neural data can be represented as a matrix X ∈ RT×N .
During each recording session, movement to various direc-
tions are repeated K times and can be represented as X =
[X1...Xk...XK ] ∈ RK×T×N . These trials have class labels
of 0,45,90,135,180,225,270,315. In order to account for this
variation in the raw neural data recorded over different
sessions, the quantitative neural data was transformed into
qualitative information in the form of inter-channel power
ranks [6]. It was observed that certain groups of electrodes
have relatively high and low power levels depending on
the direction of movement. To extract this observation, the
following algorithm was used:

1) Calculate the power of each channel in W overlapping
time windows.

2) In each time window, sort the channels based on their
power calculated above.

3) Then rank the channels such that the highest powered
one has the highest rank in that time window.

4) Replace the raw neural data with the corresponding
inter-channel power ranks calculated.

By using this transformation, a RK×T×N is projected
to a NK×W×N that spans NN . This projection eliminates
any variations in dynamic range by bounding it to N and
provides us feature vectors to train stable decoders. Com-
mon Spatial Patterns (CSP) is traditionally used to identify

Fig. 2: Discriminative Spatial Distribution in the Motor cortex grid
for the eight movement direction (placed at their corresponding
target locations). Spatial Locations indicated by the red spots have
relatively higher power than those in blue. The neural recordings
were from the area shaded green; electrodes from the blue-shaded
area were not sampled.

existing task dependent spatial patterns [6], [7], [8]. In this
paper, this concept is extended to the spatial distribution of
high powered channels. As shown in Figure 2, there exists
certain patterns that are common to one direction and are
absent in the others. These patterns were observed in at least
50% of the repeated trials for reaching a particular target and
were observed in at most 30% of the trials corresponding
to other target reaches. To extract these patterns from the
qualitative information the spatial distribution of only the top
ranked (or high power) channels was empirically calculated.
If X ∈ RT×N = x(t, n), is the neural data at time t
and channel n of a single trial as indicated above, and
p(t, n) = PowerRank(x(t, n)) is the power rank of the
channel as obtained from the algorithm above, then the rank
patterns RP are defined as

RP (t, n) =

{
1 if p(t, n) ≥ Rth,
0 otherwise

where Rth is a predefined rank threshold.
Thus, at any instant, the spatial distribution of the high

power channels is given by the location of ’1’ on the
electrode grid. By estimating the location of these channels
at successive time instances, a spatio-temporal distribution
of the top Rth ranked channels can be developed. Further,
focus can be shifted to the low powered channels by simply
choosing a value of Rth closer to the total number of chan-
nels N . It has been shown that non-linear classifiers provide
better accuracy than simple linear classifiers, especially when
dealing in a high dimensional feature space. In BCI appli-
cations, the features extensively used in the classification of
multi-channel neural data are frequency band power, auto
regressive parameters, and wavelet coefficients [7]. For our
analysis, a support vector classifier with Radial-Basis kernel
was built using the WEKA software [9]. And to improve
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decoding accuracy with multiple directions, redundant non-
linear classifiers similar to the error correction output code
(ECOC) strategy are employed, where each classifier tested
groups of directions [8]. The grouping of directions is based
on the neural correlation observed in neighboring directions.
The δ-band (0-4 Hz) provided good movement decoding [8],
and that frequency band was analyzed. As shown in the
Figure 1, the data 1s after the movement onset is used to
perform the analysis. The next section discusses the obtained
results from the analysis and some inferences.

IV. RESULTS AND DISCUSSION

As mentioned before, the main objective of this investiga-
tion was to develop a robust movement decoder with a single
training session. This was tested by using a decoder, learned
from a single session, more than a week old than the testing
sessions. The measure used for comparison is the decoding
power (or decoding accuracy) and is defined as the ratio
of number of correctly predicted trials to the total number
of trials. The performance is compared with the state-of-
the-art CSP method [8] and the Rank-CSP method in [6].
For consistency, the same set of redundant classifiers in the
ECOC method for both the CSP methods are used. Note that
the decoding accuracy achieved by random selection results
in an accuracy of 12.5% for eight different target reaches.

The results of varying channel rank threshold (Rth) for
subject H464 are shown in Table I. From the table it can
be inferred that at least 20 top powered channels need to
be analyzed to obtain reliable decoding performance over
two weeks. This result underscores the variability existing in
the data over multiple days. The analysis of top 5 powered
channels results in poor performance highlighting the change
in the spatio-temporal locations of this subset. On the other
hand, the top 20 powered channels are fairly stable across
the two weeks of testing. Also, decoding information was
be extracted from the low ranked channels (results from
rank 40 and 50). Finally, consistent and superior decoding
performance is achieved by the cumulation of all the top rank
information. The choice of the number of top rank channels
depends on the variability of the data that is being analyzed.
Table I: Decoding Power for different top ranked channels. The
decoding power for subject H464 over different testing days after
the training day is shown.

XXXXXXXXRth

Test Day 8 9 13 14

5 27.38% 32.00% 21.84% 25.00%
10 43.35% 50.46% 47.13% 30.68%
20 66.92% 64.92% 62.93% 47.73%
30 74.52% 75.08% 59.48% 56.82%
40 63.88% 71.07% 58.62% 51.14%
50 63.88% 61.54% 53.74% 54.55%
Cumulative Top
Ranks

75.67% 80.62% 70.4% 69.32%

Fig. 3: Comparison of Decoding Powers across various algorithms.

A comparison of the results for various algorithms for
subject H464 are provided in the Figure 3 and for subject
H564 in Table II. Superior decoding performance of our
method was observed when all algorithms were tested on
sessions with external field forces, as presented in Figure
4. Here, the decoders were trained on a session where
the external force VCCW was applied. It is evaluated on
sessions where different field forces were applied. These
results indicate the consistency in the spatial location of
the top ranked channels. The authors conclude this is a
result of extracting the stable spatio-temporal patterns that
are responsible for the direction decoding. For the sessions
with same field forces as the training session, or no field
forces (ex. session 30, 39) the algorithm provided consistent
decoding over multiple sessions as seen in Figure 4. However
when opposite forces were tested (ex. session 33, 36),
although our algorithm’s performance trumps the others, the
accuracy is poor. This shall be explored in future studies.

Another measure to compare the results of decoding is
information bit-rate which is calculated by the Shannon’s
theorem I := log2N + p log2 p+ (1− p) log2(1− p)/(N −
1), with number of classes N and classification accuracy p.
Using that formulation, the proposed algorithm achieves a
bit-rate of 1.44 bits/s, while the traditional algorithms (CSP)
achieve 0.59 bits/s. Table III shows a comparison of other
surveyed literature which use similar paradigms to decode
movement direction. The algorithms available in literature
use cross-validation or re-training to test their decoders. Thus
the natural (daily) variability of neural recordings is ignored,
and an optimistic estimate of the algorithm’s performance
is shown. The results obtained using our methodology are
much closer to practical results with no need of re-training.
Table II: Comparison of Decoding Powers across various algo-
rithms for Subject H564.

Day after Training 8 9
CSP 41.37% 40.38%
Rank CSP 51.44% 48.8%
Top 20 Ranks 56.31% 43.69%
Cumulative Top Ranks 61.17% 48.54%
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Fig. 4: Comparison of Decoding Powers across various algorithms across sessions with varying external field forces. Training was performed
on session 28 which had VCCW external field force.

Table III: Decoding Power (DP) and Bit-rate(BR) of various
methods in comparison with the proposed method. Note that the
other studies used cross-validation for their analysis.

Algorithm DP (# directions) BR
Bayesian Decoding, SVM [3] 40% (8) 0.35 bits/s
Directional Tuning [4] 50% (8) 0.59 bits/s
Bayesian Classification [10] 81.4% (8) 1.78bits/s
Proposed Method 74% (8) 1.44 bits/s

V. CONCLUSION

This paper presents the use of qualitative information,
in the form of inter-channel power spatial distribution to
provide stable movement decoding over time. Non-linear
classification techniques on these features are used to im-
prove decoding performance over time and in novel motor
environments. Since these spatial distributions are consistent
across various recording sessions, the proposed feature ex-
traction and classification algorithm provides better results
than the existing common spatial pattern methods. These
algorithms may also benefit from extracting features that
utilize multiple frequency bands like wavelet decomposition.
Further, feature subset selection algorithms can be used to
reduce the high dimensionality of the data sets. Finally, our
data offer the possibility of identifying a stable pattern in
the neural recordings for real-time neural control. Because
this decoder is stable, it is possible to use the same decoding
filter over days, without the need for re-training the decoder
on a daily basis, and making the BCI technology more user-
friendly in a clinical setting.
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